Toppan Demonstrates Flexible Electronic Paper Driven by Oxide Semiconductor TFT

April 24, 2006
Toppan Demonstrates Flexible Electronic Paper Driven by Oxide Semiconductor TFT
Upper Left: Flexible TFT using Amorphous Oxide Semiconductor Upper Right: Prototype of Flexible Electronic Paper Display Bottom: Close-up of Prototype using Amorphous Oxide Semiconductor TFT (on glass substrate)

Toppan Printing Co., Ltd. has developed an amorphous oxide semiconductor thin film transistor (TFT) array and succeeded in driving an electrophoretic E Ink front panel laminate to fabricate a prototype flexible electronic paper display.

Today, TFT arrays for conventional Liquid Crystal Displays use amorphous silicon as the semiconductor and are fabricated on glass using a high temperature process.

Toppan has taken note of amorphous oxide semiconductor TFT developed by Professor Hosono of Tokyo Institute of Technology, because of its processability under room temperature and electrical properties that exceed those of amorphous silicon TFT.

Toppan processed these TFTs on a plastic substrate under room temperature and fabricated a flexible electronic paper display by combining it with an electrophoretic E Ink front plane laminate. This is the first time an E Ink electronic paper display has been driven by an oxide semiconductor TFT array.

This plastic substrate, amorphous oxide semiconductor TFT array is thinner, lighter and more robust than glass substrate TFTs and is flexible. Such mechanical properties bring next generation flexible displays closer to reality.

Toppan plans to develop flexible TFTs with goals to commercialize thin, lightweight and flexible displays such as electronic paper, starting with a practical prototype display in fiscal 2008. In parallel, we aim to introduce printing methods into the fabrication process of flexible TFTs for simplification and cost reduction.

Lightweight and flexible displays are considered a promising next generation product. Especially, with the recent developments in the field of electronic paper, led by electrophoretic displays, there is a heightened need to commercialize lightweight and robust flexible TFTs on plastic substrates.

Conventional flat panel displays, like LCDs are driven by TFTs on glass, processed at high temperature (mainly amorphous silicon TFT, fabricated at over 250 degrees centigrade). On the other hand, such a glass-based TFT array has many disadvantages for electronic paper because it is heavy, fragile and rigid (not flexible).

For this reason, many researchers are developing TFTs using plastic substrates, and because high temperature processes are not possible with plastic substrates, there is a lot of research & development for low or room temperature fabrication processes.

Toppan has been conducting research & development for lightweight and flexible TFTs, and one of our significant achievements was "All-Printed Organic Transistors," announced in November, 2003. This research showed that it was technically possible to fabricate a TFT array using organic semiconductor material and with printing processes only. Many researchers worldwide are working on organic TFT, but most of the printable organic semiconductor materials face technical challenges, including electrical properties of low mobility, small on/off ratio and short lifetime issue etc.

Then in the fall of 2004, researchers led by Professor Hosono of Tokyo Institute of Technology reported flexible TFTs using amorphous oxide semiconductor (a-InGaZnO) materials (Nomura et al, Nature 432, 488 (2004)). Toppan took note of this new approach and launched a research and development program using this amorphous oxide semiconductor material. This oxide semiconductor material is room temperature processable and has better electrical properties compared to conventional amorphous silicon semiconductors. It is also possible to apply printing processes for the TFT electrodes using printable metal pastes.

Source: Toppan

Explore further: How we can substitute critical raw materials in catalysis, electronics and photonics

Related Stories

Thin-film hybrid oxide-organic microprocessor

December 10, 2014

Holst Centre, imec and their partner Evonik have realized a general-purpose 8-bit microprocessor, manufactured using complementary thin-film transistors (TFTs) processed at temperatures compatible with plastic foil substrates ...

Recommended for you

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.