Evolution Of Irreducible Complexity Explained

April 12, 2006

Using new techniques for resurrecting ancient genes, scientists have for the first time reconstructed the Darwinian evolution of an apparently "irreducibly complex" molecular system.

The research was led by Joe Thornton, assistant professor of biology at the University of Oregon's Center for Ecology and Evolutionary Biology, and was published in the April 7 issue of Science.

How natural selection can drive the evolution of complex molecular systems – those in which the function of each part depends on its interactions with the other parts--has been an unsolved issue in evolutionary biology. Advocates of Intelligent Design argue that such systems are "irreducibly complex" and thus incompatible with gradual evolution by natural selection.

"Our work demonstrates a fundamental error in the current challenges to Darwinism," said Thornton. "New techniques allowed us to see how ancient genes and their functions evolved hundreds of millions of years ago. We found that complexity evolved piecemeal through a process of Molecular Exploitation -- old genes, constrained by selection for entirely different functions, have been recruited by evolution to participate in new interactions and new functions."

The scientists used state-of-the-art statistical and molecular methods to unravel the evolution of an elegant example of molecular complexity – the specific partnership of the hormone aldosterone, which regulates behavior and kidney function, along with the receptor protein that allows the body's cells to respond to the hormone. They resurrected the ancestral receptor gene – which existed more than 450 million years ago, before the first animals with bones appeared on Earth – and characterized its molecular functions. The experiments showed that the receptor had the capacity to be activated by aldosterone long before the hormone actually evolved.

Thornton's group then showed that the ancestral receptor also responded to a far more ancient hormone with a similar structure; this made it "preadapated" to be recruited into a new functional partnership when aldosterone later evolved. By recapitulating the evolution of the receptor's DNA sequence, the scientists showed that only two mutations were required to evolve the receptor's present-day functions in humans.

"The stepwise process we were able to reconstruct is entirely consistent with Darwinian evolution," Thornton said. "So-called irreducible complexity was just a reflection of a limited ability to see how evolution works. By reaching back to the ancestral forms of genes, we were able to show just how this crucial hormone-receptor pair evolved."

The study's other researchers include Jamie T. Bridgham, postdoctorate research associate in evolutionary biology and Sean M. Carroll, graduate research fellow in biology. The work was funded by National Science Foundation and National Institutes of Health grants and an Alfred P. Sloan Research Fellowship recently awarded to Thornton.

Copyright 2006 by Space Daily, Distributed United Press International

Explore further: Another milestone in hybrid artificial photosynthesis

Related Stories

Another milestone in hybrid artificial photosynthesis

August 25, 2015

A team of researchers at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory developing a bioinorganic hybrid approach to artificial photosynthesis have achieved another milestone. Having generated ...

Key protein in cilia assembly identified

August 21, 2015

The group led by ICREA Research Professor Cayetano Gonzalez at IRB Barcelona, in collaboration with the group of Professor Giuliano Callaini from the University of Siena in Italy, has published a new study in Current Biology ...

FIC proteins send bacteria into hibernation

August 20, 2015

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue ...

Is nature mostly a tinkerer or an inventor?

August 18, 2015

The Krüppel-like factor and specificity protein (KLF/SP) genes are found across many species, ranging from single cell organisms to humans. This gene family has been conserved during evolution, because it plays a vital role ...

Clever feedback system regulates immune responses

August 17, 2015

A newly discovered feedback mechanism in the body is responsible for keeping immune responses from getting out of hand. It works at the level of certain genes, linking the inactivation of those genes to the progress made ...

Recommended for you

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

Water heals a bioplastic

September 1, 2015

A drop of water self-heals a multiphase polymer derived from the genetic code of squid ring teeth, which may someday extend the life of medical implants, fiber-optic cables and other hard to repair in place objects, according ...

ATLAS and CMS experiments shed light on Higgs properties

September 1, 2015

Three years after the announcement of the discovery of a new particle, the so-called Higgs boson, the ATLAS and CMS Collaborations present for the first time combined measurements of many of its properties, at the third annual ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.