Light-sensitive particles change chemistry at the flick of a switch

March 27, 2006

A light-sensitive, self-assembled monolayer that provides unique control over particle interactions has been developed by scientists at the University of Illinois at Urbana-Champaign. Particles coated with the monolayer change their surface charge and chemistry upon exposure to ultraviolet light.

"Tailoring interactions between particles allows us to design colloidal fluids, gels and crystals for use as ceramic, photonic and pharmaceutical materials," said Jeffrey Moore, a William H. and Janet Lycan Professor of Chemistry and a researcher at the Frederick Seitz Materials Research Laboratory and at the Beckman Institute for Advanced Science and Technology. "We are assembling a toolkit of molecules that can be incorporated as monolayers on particles to achieve desired effects."

Light-induced modification of colloidal interactions provides an 'extra handle' for tailoring system behavior, said Jennifer Lewis, the Thurnauer Professor of Materials Science and Engineering and interim director of the Frederick Seitz Materials Research Laboratory.

"The monolayer is designed so that light triggers the cleavage of a specific chemical bond, thereby exposing an underlying functional group of interest," said Lewis, who also is a professor of chemical and biomolecular engineering and a researcher at the Beckman Institute.

Moore and Lewis first demonstrated the technique in a paper published in the Sept. 30, 2005, issue of the Journal of the American Chemical Society. In that work, the surface charge and, thus, the electrostatic interactions between photosensitive silica microspheres, were modified by exposure to ultraviolet light.

In recent work, the researchers documented the gel-to-fluid transition in binary mixtures that initially were oppositely charged. "Exposure to ultraviolet light rendered all of the particles negative and converted the system into a colloidal fluid that settled to form a dense sediment," said Moore, who will present the team's findings at the national meeting of the American Chemical Society, to be held in Atlanta, March 26-30.

"These light-responsive systems will enable novel assembly routes for creating colloidal structures in a variety of materials," Lewis said. "We are currently investigating the ability to locally photo-pattern such assemblies in three dimensions without requiring multiple processing steps."

Light-sensitive colloidal particles could also be used to "tune" the elastic properties, viscous response and microstructure of gel-based inks used in the direct-write assembly of complex, three-dimensional structures formed by robotic deposition.

The Moore group is developing multiple wavelength-specific triggers that would allow different wavelengths of light to induce changes sequentially.

Source: University of Illinois at Urbana-Champaign

Explore further: A most singular nano-imaging technique (Update)

Related Stories

A most singular nano-imaging technique (Update)

July 16, 2015

Just as proteins are one of the basic building blocks of biology, nanoparticles can serve as the basic building blocks for next generation materials. In keeping with this parallel between biology and nanotechnology, a proven ...

How oversized atoms could help shrink

July 1, 2015

"Lab-on-a-chip" devices – which can carry out several laboratory functions on a single, micro-sized chip – are the result of a quiet scientific revolution over the past few years. For example, they enable doctors to make ...

New composite material as CO2 sensor

June 8, 2015

A new material changes its conductivity depending on the concentration of CO2 in the environment. The researchers who developed it have utilized the material to produce a miniature, simply constructed sensor.

Recommended for you

New lizard named after Sir David Attenborough

August 3, 2015

A research team led by Dr Martin Whiting from the Department of Biological Sciences recently discovered a beautifully coloured new species of flat lizard, which they have named Platysaurus attenboroughi, after Sir David Attenborough.

'Snowball earth' might be slushy

August 3, 2015

Imagine a world without liquid water—just solid ice in all directions. It would certainly not be a place that most life forms would like to live.

A look at living cells down to individual molecules

August 3, 2015

EPFL scientists have been able to produce footage of the evolution of living cells at a nanoscale resolution by combining atomic force microscopy and an a super resolution optical imaging system that follows molecules that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.