Researchers confirm role of massive flood in climate change

January 10, 2006

Climate modelers at the Goddard Institute for Space Studies (GISS) have succeeded in reproducing the climate changes caused by a massive freshwater pulse into the North Atlantic that occurred at the beginning of the current warm period 8,000 years ago. Their work is the first to consistently model the event and the first time that the model results have been validated by comparison to the record of climate proxies that scientists regularly use to study the Earth's past.

"We only have one example of how the climate reacts to changes, the past," said Gavin A. Schmidt, a GISS researcher and co-author on the study. "If we're going to accurately simulate the Earth's future, we need to be able to replicate past events. This was a real test of the model's skill."

The study was led by Allegra LeGrande, a graduate student in the department of earth and environmental sciences at Columbia University. The results appear in a paper being published in this week's edition of the journal Proceedings of the National Academy of Sciences (PNAS).

The group used an atmosphere-ocean coupled climate model known as GISS Model E-R to simulate the climate impact of a massive freshwater flood into the North Atlantic that happened about 8,200 years ago after the end of the last Ice Age. As retreating glaciers opened a route for two ancient meltwater lakes known as Agassiz and Ojibway to suddenly and catastrophically drain from the middle of the North American continent.

At approximately the same time, climate records show that the Earth experienced its last abrupt climate shift. Scientists believe that the massive freshwater pulse interfered with the ocean's overturning circulation, which distributes heat around the globe. According to the record of what are known as climate proxies, average air temperatures apparently dropped fell as much as several degrees in some areas of the Northern Hemisphere.

Climate researchers use these proxies--chemical signals locked in minerals and ice bubbles as well as pollen and other biological indicators--as indirect measures of temperature and precipitation patterns in the distant past. Because GISS Model E-R incorporates the response of these proxies in its output, the authors of the PNAS study were able to compare their results directly to the historical record.

The researchers prodded their model with a freshwater pulse equal to between 25 and 50 times the flow of the Amazon River in 12 model runs that took more than a year to complete. Although the simulations largely agreed with proxy records from North Atlantic sediment cores and Greenland ice cores, the team's results showed that the flood had much milder effects around the globe than many people fear--including the dramatic shifts in climate depicted in the 2004 movie 'The Day After Tomorrow'.

According to the model, temperatures in the North Atlantic and Greenland showed the largest decrease, with slightly less cooling over parts of North America and Europe. The rest of the northern hemisphere, however, showed very little effect, and temperatures in the southern hemisphere remained largely unchanged. Moreover, ocean circulation, which initially dropped by half after simulated flood, appeared to rebound within 50 to 150 years.

"This was probably the closest thing to a 'Day After Tomorrow' scenario that we could model," said LeGrande. "The flood we looked at was even larger than anything that could happen today. Still, it's important for us to study because the real thing occurred during a period when conditions were not that much different from the present day."

The GISS climate model is also being used for the latest simulations by the Intergovernmental Panel on Climate Change (IPCC) to simulate the Earth's present and future climate. "Hopefully, successful simulations of the past such as this will increase confidence in the validity of model projections," said Schmidt.

Source: The Earth Institute at Columbia University

Explore further: Heatwaves in the ocean—a risk to ecosystems?

Related Stories

Heatwaves in the ocean—a risk to ecosystems?

September 19, 2016

Marine ecosystems are responsible for about half of global annual primary production and more than one billion people rely on fish as their primary protein source. Latest studies show that enormous warm water bubbles in the ...

Researcher helping to tackle the world's water challenges

September 23, 2016

A researcher from the University of Manchester has developed a free tool to help scientists and policymakers to manage agricultural water use and improve crop water productivity in regions where supply is scarce.

Fires pollute the air in West Africa

August 30, 2016

West Africa is changing rapidly. An explosively growing population, massive urbanization, and unregulated deforestation modify the composition of the atmosphere, thus affecting weather and climate. How exactly these emissions ...

Recommended for you

Rosetta: The end of a space odyssey

September 26, 2016

Europe's trailblazing deep-space comet exploration for clues to the origins of the Solar System ends Friday with the Rosetta orbiter joining robot lab Philae on the iceball's dusty surface for eternity.

Physicists create nanoscale mirror with only 2000 atoms

September 26, 2016

Mirrors are the simplest means to manipulate light propagation. Usually, a mirror is a macroscopic object composed of a very large number of atoms. In the September 23th issue of the Physical Review Letters, Prof. Julien ...

Melting Greenland ice threatens to expose Cold War waste

September 26, 2016

A snow-covered former US army base in Greenland—dubbed "a city under ice"—could leak pollutants into the environment as the climate changes, raising difficult questions over who is responsible for a clean-up.

Sounding rocket solves one cosmic mystery, reveals another

September 26, 2016

In the last century, humans realized that space is filled with types of light we can't see – from infrared signals released by hot stars and galaxies, to the cosmic microwave background that comes from every corner of the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.