Spider Robots And The Space Web

December 14, 2005
Spider Robots And The Space Web

Robotic 'spiders' could be the key to building large-scale structures in space, according to ESA's Advanced Concepts Team. The tiny mechanical spiders would inch their way across large nets of fabric in space performing small tasks or lining up to create an antenna or some other structure.

Image above: The Japanese Aerospace Exploration Agency (JAXA) is planning to test a Furoshiki spacecraft in January 2006. Assisted by ESA's Advanced Concepts Team, it has chosen the robotics institute of the Vienna University of Technology to develop the small robots. Credits: ESA

The concept is known as a Furoshiki satellite after the Japanese word for a cloth used to wrap up possessions. It could revolutionise satellite-based applications such as telecommunications, navigation and Earth observation using radars, by providing cost effective large antennas in space that can be launched on relatively small rockets.

The Japanese Aerospace Exploration Agency (JAXA) is planning to test a Furoshiki spacecraft in January 2006. Assisted by ESA's Advanced Concepts Team, it has chosen the robotics institute of the Vienna University of Technology to develop the small robots. The Vienna team is led by Prof. Kopacek, who is known for his world championship victories in robot soccer!

The experiment will be launched in a compact configuration aboard a Japanese sounding rocket. Once in space, the mother satellite will deploy three 'daughters'. These will pull out a woven net into a triangle, leaving the mother satellite at the centre. Once the net is deployed, two palm-sized robots will 'crawl' along the net into prearranged positions.

Because the test is only taking place on a sounding rocket, the satellites will not actually go into orbit around the Earth. Instead they will be placed on a suborbital trajectory that will loop up into space before falling back and burning up in Earth's atmosphere. The experiment will experience around 10 minutes of weightlessness.

During that time, the 40-metre-long triangular net will take between 3–5 minutes to deploy and then the robots will take a further 3–5 minutes to crawl out from the mother satellite to prearranged positions.

Tiny cameras on the mother and daughter satellites will send images of the deployment and crawling test back to Earth for analysis. "I hope that we can demonstrate for the first time that it is possible to move along a very thin, free floating net in a controlled fashion," says Leopold Summerer from ESA's Advanced Concepts Team.

To do this, the team have created a cunning system of wheels for the robots that can grip both sides of the fabric in order to not loose the net when there is no gravity.

Another aspect of the test is for the four satellites to line themselves up in space and transmit a synchronized signal to the ground. So each satellite must know the locations of the others and then adjust its radio output accordingly. To do this, the satellites exchange radio signals and use tiny jets to line themselves up. They will then listen for a pilot signal from the ground. Once they receive this, they will begin transmitting their response. The technology required to do this was developed at Kobe University of Japan.

This is the first small step towards satellites that collect solar energy using large arrays of solar panels and then beam the energy down to Earth. Such satellites could revolutionise the Earth's energy supply systems by providing large amounts of clean solar energy. "A solar power satellite would need very large structures for its solar panels and antenna. Small experiments like this can help us mature the technology needed to build them," says Summerer.

Source: ESA

Explore further: Student's system for locking satellites together to get first space test

Related Stories

Under-ice rover chills with fish at aquatic exhibit

June 26, 2015

A school of sardines fluttered by as giant leafy kelp swayed back and forth at the California Science Center in Los Angeles on Monday, June 22. At the bottom of this 188,000-gallon aquatic tank, a bright orange garibaldi ...

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

Binary star system precisely timed with pulsar's gamma-rays

July 31, 2015

Pulsars are rapidly rotating compact remnants born in the explosions of massive stars. They can be observed through their lighthouse-like beams of radio waves and gamma-rays. Scientists at the Max Planck Institute for Gravitational ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.