# Mathematicians solve old problem that may have new applications

##### December 25, 2005

A twisted soap bubble with a handle? If you find that hard to visualize, it's understandable. Experts had thought for more than 200 years that such a structure was not even mathematically possible. But no longer.

In a paper published in the Nov. 15 issue of Proceedings of the National Academy of Sciences, mathematicians Matthias Weber of Indiana University, David Hoffman of Stanford University, and Michael Wolf of Rice University presented a proof of the existence of a new minimal surface they call a genus one helicoid.

"This proof tells us that our intuition was not quite right about what is possible and what is not possible," Weber said. "Probably one reason it was not discovered sooner is that no one imagined that something like this could exist."

A helicoid is what results when one of the simplest shapes -- a flat plane -- is twisted an infinite number of times. If the helicoid is vertical, its shape resembles a spiral parking ramp.

The new surface looks much like this traditional helicoid with an extra feature: a handle such as one finds on a coffee mug. It turns out that on one "floor" of the parking ramp there is an additional column -- the handle.

All minimal surfaces have something important in common: a minimal surface area.

"A minimal surface is formed when the pressure on both sides of a surface is the same," Weber explained. "'For example, when you dip a bent coat hanger into soapy water, the soap bubble that forms on the hanger is a minimal surface." These soap bubbles can have various shapes, depending on the shape of the coat hanger, but in every case the bubble is trying to minimize surface tension, he said. This happens when the bubble has the smallest possible surface area.

At every point, a minimal surface is either flat or shaped like a saddle or a potato chip.

Minimal surfaces are proving to be important at the molecular level. "Minimal surfaces actually occur in nature at the nanoscale as interfaces between certain substances," Weber said. An example is some copolymers that are plastics used to make new kinds of fabrics. When these copolymers are mixed, there are interfaces between them that are minimal surfaces. Knowing what these interfaces look like can help in determining what the chemical properties of the mixture will be.

Minimal surfaces are extremely stable as physical objects, Weber pointed out, and this can be an advantage in many kinds of structures. He has heard from architects who have seen computerized illustrations of some of his minimal surfaces and are intrigued by the possibility of adapting them to structures, both interior and exterior. He has exchanged information about minimal surfaces with some architects and is exploring ways to collaborate with them.

Calendars are another use for this work, highlighting the aesthetic qualities of minimal surfaces. These aesthetic qualities are on vivid display in Weber's computer gallery of minimal surfaces at www.indiana.edu/~minimal/gallery/index/index.html , which shows minimal-surface objects set in imaginary landscapes.

"The images in the gallery are not intended as illustrations of mathematical facts," Weber said. "They more than fulfill their purpose if people see them and can feel some of the intriguing enchantment that a mathematician feels when exploring the mathematical objects."

In a second gallery at www.indiana.edu/~minimal/archive/index.html the pictures do illustrate mathematical facts. "This is the most comprehensive collection of minimal surfaces available," Weber said. "Users can download programs that recreate the surfaces, allowing them to conduct numerical and visual experiments."

The mathematicians' complete proof is more than 100 pages long. The abstract of their report in Proceedings of the National Academy of Sciences is available at www.pnas.org/cgi/content/abstract/102/46/16566 .

Source: Indiana University

Explore further: New studies take a second look at coral bleaching culprit

## Related Stories

#### New studies take a second look at coral bleaching culprit

December 7, 2016

Scientists have called superoxide out as the main culprit behind coral bleaching: The idea is that as this toxin build up inside coral cells, the corals fight back by ejecting the tiny energy- and color-producing algae living ...

#### How strong is the force of gravity on Earth?

December 7, 2016

Gravity is a pretty awesome fundamental force. If it wasn't for the Earth's comfortable 1 g, which causes objects to fall towards the Earth at a speed of 9.8 m/s², we'd all float off into space. And without it, all us terrestrial ...

#### What is the weather like on Venus?

December 5, 2016

Venus is often called Earth's "Sister Planet" because of all the things they have in common. They are comparable in size, have similar compositions, and both orbit within the Sun's habitable zone. But beyond that, there are ...

#### Reconstructing the Red Sea's climate patterns

December 6, 2016

An advanced numerical model is helping researchers better understand the variability of the Red Sea's climate patterns.

#### Ceiling panel cools regardless of climate

December 1, 2016

Poorly maintained air conditioning systems cause mold or other bacteria to spread; they often also generate drafts and are costly to operate. An alternative technology that uses ceiling panels covered in special heat-conducting ...

#### Detailed images of NMDA receptors help explain how zinc and a drug affect their function

December 1, 2016

The difference between mental health and mental illness can turn on changes in brain cells and their connections that are almost incomprehensibly tiny, at least in physical terms. This irony is brought to light by X-ray crystallography, ...

## Recommended for you

#### Studies open deep history of Greenland's ice sheet—and raise new questions about its stability

December 7, 2016

The ice sheet covering Greenland is four times bigger than California—and holds enough water to raise global sea-level more than twenty feet if most of it were to melt. Today, sea levels are rising and the melting of Greenland ...

#### Photonic crystal enhanced microscope sheds light on wound healing and cancer metastasis

December 7, 2016

University of Illinois Electrical & Computer Engineering and Bioengineering Professor Brian Cunningham's Nano Sensors group has invented a novel live-cell imaging method that could someday help biologists better understand ...

#### Giant radio flare of Cygnus X-3 detected by astronomers

December 7, 2016

(Phys.org)—Russian astronomers have recently observed a giant radio flare from a strong X-ray binary source known as Cygnus X-3 (Cyg X-3 for short). The flare occurred after more than five years of quiescence of this source. ...

#### Uncovering the secrets of water and ice as materials

December 7, 2016

Water is vital to life on Earth and its importance simply can't be overstated—it's also deeply rooted within our conscience that there's something extremely special about it. Yet, from a scientific point of view, much remains ...

#### Swiss unveil stratospheric solar plane

December 7, 2016

Just months after two Swiss pilots completed a historic round-the-world trip in a Sun-powered plane, another Swiss adventurer on Wednesday unveiled a solar plane aimed at reaching the stratosphere.

#### Closing the carbon loop: Team identifies new catalyst that advances capture, conversion of atmospheric carbon dioxide

December 7, 2016

Research at the University of Pittsburgh's Swanson School of Engineering focused on developing a new catalyst that would lead to large-scale implementation of capture and conversion of carbon dioxide (CO2) was recently published ...