'Sharp' older brains are not the same as younger brains

November 13, 2005
Brain

Researchers working with rats have found the first solid evidence that still "sharp" older brains store and encode memories differently than younger brains.

This discovery is reported by a Johns Hopkins team in the issue of Nature Neuroscience released online Nov. 13. Should it prove to apply as well to human brains, it could lead eventually to the development of new preventive treatments and therapies based on what healthy older brains are doing, rather than on the less relevant, younger brain model, according to study co-author Michela Gallagher, chair of the Department of Psychological and Brain Sciences at Johns Hopkins' Zanvyl Krieger School of Arts and Sciences.

"We found that aged rats with preserved cognitive abilities are not biologically equivalent to young rats in some of the basic machinery that neurons use to encode and store information in the brain," said Gallagher, who collaborated with Alfredo Kirkwood and Sun Seek Min of Johns Hopkins' Krieger Mind/Brain Institute and Hey-Kyoung Lee, now of the University of Maryland College Park. Lee was a research associate at the Mind/Brain Institute when the research was done.

The Gallagher-Kirkwood team compared the brains of 6-month-old rats with those of 2-year-old (considered "aged") rodents that had performed in the "young" range on various learning tasks. The aged rats' brains also were compared with those of older rats which showed declines in their abilities to learn new things. The researchers were looking at a key set of nerve cell connections that store information by modifying the strength of chemical communications at their synapses. (Synapses are the tiny gaps between nerve cells, where chemicals released by one cell act upon another.) Synaptic communication is the way brains register and preserve information to form memories.

The team found that while the older rats with compromised cognition had brains that had lost the ability to adjust the force of those synaptic communications, the older rats whose memories remained sharp still had that capacity. Interestingly enough, the successful older rats also relied far less than did younger rats on a synaptic receptor that is linked to a common mechanism for storing memories, the team learned.

"Instead, successful agers relied more than young rats on a different mechanism for bringing about synaptic change," Gallagher said. "This 'switch' could serve the same purpose – storing memories – but through a different neurochemical device."

Source: Johns Hopkins University

Explore further: Rejuvenating the comparative approach in modern neuroscience

Related Stories

Rejuvenating the comparative approach in modern neuroscience

July 20, 2015

65 years ago, the famed behavioral endocrinologist Frank Beach wrote an article in The American Psychologist entitled 'The Snark was a Boojum'. The title refers to Lewis Carroll's poem 'The Hunting of the Snark', in which ...

Neural 3-D compass discovered in mammalian brain

December 3, 2014

Pilots are trained to guard against vertigo: a sudden loss of the sense of vertical direction that renders them unable to tell "up" from "down" and sometimes even leads to crashes. Coming up out of a subway station can produce ...

New research reveals fish are smarter than we thought

October 30, 2014

(Phys.org) —A new study from researchers in our Department of Psychology with colleagues at Queen Mary University of London has reported the first evidence that fish are able to process multiple objects simultaneously.

Recommended for you

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.