Wetness-defying water? Physicists discover a paradox: hydrophobic water

October 14, 2005

Now you can extend that truism about oil and water to water and itself. Water and water don't always mix, either.
The textbooks say that water readily comes together with other water, open arms of hydrogen clasping oxygen attached to other OH molecules. This is the very definition of "wetness." But scientists at Pacific Northwest National Laboratory have observed a first: a single layer of water--ice grown on a platinum wafer--that gives the cold shoulder to subsequent layers of ice that come into contact with it.

"Water-surface interactions are ubiquitous in nature and play an important role in many technological applications such as catalysis and corrosion," said Greg Kimmel, staff scientist at the Department of Energy lab and lead author of a paper in the current issue (Oct. 15 advance online edition) of Physical Review Letters. "It was assumed that one end of the water molecule would bind to metal, and at the other end would be these nice hydrogen attachment points for the atoms in next layer of water."

A theory out of Cambridge University last year suggested that these attachment points, or "dangling OH's," did not exist, that instead of dangling, the OH's were drawn by the geometry of hexagonal noble-metal surfaces and clung to that.

Kimmel and his co-authors, working at the PNNL-based W.R. Wiley Environmental Molecular Sciences Laboratory, tested the theory with a technique called rare gas physisorption that enlists krypton to probe metal surfaces and water layers on those surfaces. They found that the first single layer of water, or monolayer, wetted the platinum surface as they had expected but "that subsequent layers did not wet the first layer," Kimmel said. "In other words, the first layer of water is hydrophobic."

The results jibe with an earlier Stanford University study that used X-ray adsorption to show that rather than being fixed pointing outward in the dangling position, wet and ready to receive the next water layer, the arms of a water monolayer on a metal surface are double-jointed. They swivel back toward the surface of the metal to find a place to bind. To the water molecules approaching this bent-over-backward surface, the layer has all the attractiveness of a freshly waxed car's hood.

The second layer beads up, but that's not all: Additional water's attraction to that first hydrophobic water monolayer is so weak that 50 or more ice-crystal layers can be piled atop the first until all the so-called non-wetting portions are covered--akin to "the coalescence of water drops on a waxed car in a torrential downpour," said Bruce Kay, PNNL laboratory fellow and co-author with Kimmel and PNNL colleagues Nick Petrik and Zdenek Dohnálek.

Kimmel said that self-loathing water on metal is more than a curiosity and will come as a surprise to many in the field who assumed that water films uniformly cover surfaces. Hundreds of experiments have been done on thin water films grown on metal surfaces to learn such things as how these films affect molecules in which they come into contact and what role heat, light and high-energy radiation play in such interactions.

Source: Pacific Northwest National Laboratory

Explore further: Way cheaper catalyst may lower fuel costs for hydrogen-powered cars

Related Stories

Surface of the oceans affects climate more than thought

September 30, 2015

The oceans seem to produce significantly more isoprene, and consequently affect stronger the climate than previously thought. This emerges from a study by the Institute of Catalysis and Environment in Lyon (IRCELYON, CNRS ...

Hydrogen for all seasons

September 30, 2015

Ludwig Maximilian University of Munich chemists have developed novel porous materials called "covalent organic frameworks", which provide a basis for the design of polymeric photocatalysts with tunable physical, chemical ...

Marine archaeologists excavate Greek Antikythera shipwreck

September 25, 2015

Archaeologists excavating the famous ancient Greek shipwreck that yielded the Antikythera mechanism have recovered more than 50 items including a bronze armrest (possibly part of a throne), remains of a bone flute, fine glassware, ...

Water pathways make fuel cells more efficient

September 24, 2015

Researchers from the Paul Scherrer Institute (PSI) have developed a coating technique in the laboratory that could raise the efficiency of fuel cells. The PSI scientists have already applied to patent the technique, which ...

Recommended for you

On soft ground? Tread lightly to stay fast

October 8, 2015

These findings, reported today, Friday 9th October, in the journal Bioinspiration & Biomechanics, offer a new insight into how animals respond to different terrain, and how robots can learn from them.

Ancient genome from Africa sequenced for the first time

October 8, 2015

The first ancient human genome from Africa to be sequenced has revealed that a wave of migration back into Africa from Western Eurasia around 3,000 years ago was up to twice as significant as previously thought, and affected ...

Blue skies, frozen water detected on Pluto

October 8, 2015

Pluto has blue skies and patches of frozen water, according to the latest data out Thursday from NASA's unmanned New Horizons probe, which made a historic flyby of the dwarf planet in July.

New method facilitates research on fuel cell catalysts

October 8, 2015

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.