Humidity sensor: hybrid nanoelectronics made from living bacteria and gold nanoparticles

October 7, 2005

Living organisms as an integral part of electronic components? What may look like science fiction at first glance is actually a serious approach to the nanoelectronics of tomorrow. Living organisms could provide the required nanostructures. Researchers at the University of Nebraska (Lincoln, USA) have now shown that bacteria coated with gold nanoparticles can function as a humidity sensor.

The properties of metallic nanoparticles differ radically from those of larger particles and are of great interest for nanoelectronics. In order to use nanoparticles, they must be placed on a suitable support, a “nanoscaffold”. “Biological structures have proven to be promising supports,” explains Ravi Saraf, “especially when their responses to stimuli can be integrated.”

Saraf and his co-worker Vikas Berry produced a chip covered with extremely fine gold electrodes and applied a suspension of Bacillus cereus. On such surfaces, these long bacteria basically lie down to form bridges between the pairs of electrodes. Then the nanoparticles come in: the researchers dipped their chip into a solution of gold nanoparticles coated with polylysine, a synthetic protein. The tiny gold particles are strongly attracted to the bacterial surface, which contains long, brushlike, highly mobile chain molecules that are negatively charged. Like tentacles, these surround the gold particles—positively charged by the polylysine—and hold them tight. At the end of this process, the bacteria are coated with a thin layer of gold nanoparticles—and are still alive.

The researchers apply a voltage of 10 V across the electrode pairs and measure the current across the bacterial bridges to complete the bioelectronic humidity sensor. If the humidity is increased from about 0 to 20%, the current decerases by a factor of 40. Why does this chip react so sensitively to changes in humidity? Moisture causes the bacterial membrane to swell, which increases the distance between the individual gold particles attached to it by about 0.2 nm. This is not much, but it is enough to hinder electron transport between the particles. Unlike a “normal” macroscopic gold layer, in which the electrons can “flow” unhindered, here they must “jump” from one particle to the next.

“Our humidity sensor demonstrates the vast potential that lies in hybrid structures containing microorganisms and nanoparticles,” says Saraf.

Author: Ravi F. Saraf, University of Nebraska, Lincoln (USA),

Title: Self-Assembly of Nanoparticles on Live Bacterium: An Avenue to Fabricate Electronic Devices
Angewandte Chemie International Edition 2005, 44, 6668, doi: 10.1002/anie.200501711

Source: Angewandte Chemie

Explore further: Breakthrough could lead to 'artificial skin' that senses touch, humidity and temperature

Related Stories

Scientists develop revolutionary nanotechnology copper solder

October 25, 2012

(—Scientists in the Advanced Materials and Nanosystems directorate at the Lockheed Martin Space Systems Advanced Technology Center (ATC) in Palo Alto have developed a revolutionary nanotechnology copper-based electrical ...

Finger-pricks a thing of the past

May 12, 2010

ETH-Zurich researchers have developed a new kind of sensor that can immediately gauge whether a person is suffering from type 1 diabetes upon coming into contact with their breath.

Cotton computing goes live at Cornell textiles lab

December 30, 2011

( -- Researchers from France, Italy and the United States are weaving cotton with transistors for a new look in computing. Based on news about a lab at Cornell University, wearable computing is getting a new twist. ...

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.