For the First Time, a Five-Fold Bond

October 14, 2005

Chemists at UC Davis have made the first stable compound with a five-fold bond between two metal atoms. The work with chromium could give researchers new insights into the nature of chemical bonding.

Much of chemistry is about understanding how bonds are made and broken. For most of the history of chemistry, only single, double or triple bonds were known. Multiple bonds are particularly important in carbon chemistry, but only certain metals are theoretically capable of more than triple bonds, said Philip Power, professor of chemistry at UC Davis and senior author on the paper.

The dark red crystals were synthesized by Tailuan (Peter) Nguyen, a graduate student in Power's laboratory. The chromium-based compound is stable at room temperature but decomposes in the presence of water, and spontaneously ignites when exposed to air.

To make the compound, Nguyen and Power attached large carbon-based molecules to chromium atoms, constraining how they could behave. They were then able to coax the chromium atoms to bond with each other. The multiple bonding was confirmed by X-ray crystallography and magnetic measurements.

As far as we know, no comparable compound exists in nature, Power said.

In addition to Nguyen and Power, other authors on the paper were postdoctoral researcher Andrew Sutton, theorist Marcin Brynda and crystallographer James Fettinger at the UC Davis chemistry department; and Gary Long, professor of chemistry at the University of Missouri, Rolla. Peter Klavins and Long Pham at the UC Davis physics department carried out magnetic measurements for the study.

The work is published online in Science Express and will appear in the print version of the journal Science later this year.

Source: UC Davis

Explore further: IBM's Almaden Lab: A glimpse into the future

Related Stories

IBM's Almaden Lab: A glimpse into the future

August 30, 2016

To step inside IBM Research-Almaden is to get a peek into how the latest advances in technology are being applied to a crazy quilt of important issues from food safety and cancer to recycling.

Novel Chemistry for Ethylene and Tin

September 29, 2009

( -- New work by chemists at UC Davis shows that ethylene, a gas that is important both as a hormone that controls fruit ripening and as a raw material in industrial chemistry, can bind reversibly to tin atoms. ...

Supercomputers used to supercharge antioxidants

February 19, 2013

The future of keeping ageing-related diseases at bay lies with the supercomputer according to scientists from the ARC Centre of Excellence for Free Radical Chemistry and Biotechnology at the University of Sydney.

Recommended for you

Bubble nucleus discovered

October 27, 2016

Research conducted at the National Superconducting Cyclotron Laboratory at Michigan State University has shed new light on the structure of the nucleus, that tiny congregation of protons and neutrons found at the core of ...

Shocks in the early universe could be detectable today

October 27, 2016

(—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.