For the First Time, a Five-Fold Bond

Oct 14, 2005

Chemists at UC Davis have made the first stable compound with a five-fold bond between two metal atoms. The work with chromium could give researchers new insights into the nature of chemical bonding.

Much of chemistry is about understanding how bonds are made and broken. For most of the history of chemistry, only single, double or triple bonds were known. Multiple bonds are particularly important in carbon chemistry, but only certain metals are theoretically capable of more than triple bonds, said Philip Power, professor of chemistry at UC Davis and senior author on the paper.

The dark red crystals were synthesized by Tailuan (Peter) Nguyen, a graduate student in Power's laboratory. The chromium-based compound is stable at room temperature but decomposes in the presence of water, and spontaneously ignites when exposed to air.

To make the compound, Nguyen and Power attached large carbon-based molecules to chromium atoms, constraining how they could behave. They were then able to coax the chromium atoms to bond with each other. The multiple bonding was confirmed by X-ray crystallography and magnetic measurements.

As far as we know, no comparable compound exists in nature, Power said.

In addition to Nguyen and Power, other authors on the paper were postdoctoral researcher Andrew Sutton, theorist Marcin Brynda and crystallographer James Fettinger at the UC Davis chemistry department; and Gary Long, professor of chemistry at the University of Missouri, Rolla. Peter Klavins and Long Pham at the UC Davis physics department carried out magnetic measurements for the study.

The work is published online in Science Express and will appear in the print version of the journal Science later this year.

Source: UC Davis

Explore further: Linking superconductivity and structure

Related Stories

UK mini-laboratory catches up with double comet

Aug 05, 2014

This week, on 6 August, a mini-laboratory developed and built at the UK's Science and Technology Facilities Council's (STFC) Rutherford Appleton Laboratory is due to rendezvous with a comet.

Recommended for you

Quantum computer emulated by a classical system

44 minutes ago

(Phys.org)—Quantum computers are inherently different from their classical counterparts because they involve quantum phenomena, such as superposition and entanglement, which do not exist in classical digital ...

Scientist provides new fluid dynamics insights

2 hours ago

New calculations by a theoretical astrophysicist at The University of Alabama in Huntsville (UAH) provide tools that open a door to exploring the history of events in astrophysical flows and in plasma fusion ...

Linking superconductivity and structure

4 hours ago

Superconductivity is a rare physical state in which matter is able to conduct electricity—maintain a flow of electrons—without any resistance. It can only be found in certain materials, and even then ...

On-demand X-rays at synchrotron light sources

19 hours ago

Consumers are now in the era of "on-demand" entertainment, in which they have access to the books, music and movies they want thanks to the internet. Likewise, scientists who use synchrotron light sources ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.