Unlocking the organic composition of ancient asteroids

Oct 07, 2005 feature

New technology discovers primitive organic matter in 4.5 billion year old meteorites

Meteorites contain fragments of asteroids brought about by collisions within the asteroid belt. These meteorites have not been exposed to geological processes experienced by planets and stars. Therefore, much of the matter in these meteorites originates from the formation of the Solar System some 4.5 billion years ago.

Being the only record of the Solar System’s pre-biotic chemical evolution, scientists have tried for years to extract and study this material. It is believed that discovering the composition of meteorites will reveal what the Solar System was made of at its birth and how those materials evolved into our current-day universe.

Most of the methods used to extract this matter have failed leading to the destruction of the meteorite material or just the inability to extract any compounds.

However, a recent study from the Planetary and Space Science Journal explains how scientists have developed a novel approach to extracting these meteoric materials. It’s called hydropyrolysis.

This new technology uses high hydrogen gas pressures, extreme temperature, and water as a non-destructive means for extracting organic and inorganic compounds from meteorites.

This process has revealed high amounts of carbon and nitrogen- elements essential to life at the core of the meteorites. Also, this new technology revealed several never-before-seen organic molecules.

The results of this study also contradict a common understanding to the origin of meteorites. It is thought that meteoric material originated from a molecular could that collapsed to form the Solar System. Scientists using hydropyrolysis believe this is a misconception and seek to use this technology to find the true origin of the organic matter in meteorites.

Scientists hope that the use of this new technology will offer even more clues into the composition of the Solar System when it was forming.

Finally researchers have a way to trace the evolutionary path of organic compounds which will ultimately lead to knowledge of the evolution of our universe.

Reference:
Sephton M, Love G, Meredith W, Snape C, Sun C, and Watson J. 2005. Planetary and Space Science Journal. Article in Press.

by Gina Buss, Copyright 2005 PhysOrg.com

Explore further: SpaceX rocket explosion unlikely to slow launches for long

Related Stories

NASA funds SwRI instrument to date moon and Mars rocks

May 12, 2015

NASA has approved $2.6 million to advance development of Southwest Research Institute's (SwRI) Chemistry, Organics, and Dating Experiment (CODEX) instrument. The device will allow unmanned rovers to analyze the decay of radioactive ...

Technique reveals age of planetary materials

Jan 20, 2015

The key to understanding the geologic history of the Solar System is knowing the ages of planetary rocks. Researchers have developed an instrument that is not only capable of dating rocks, but also is composed entirely of ...

Recommended for you

What is the newest planet?

23 minutes ago

With astronomers discovering new planets and other celestial objects all the time, you may be wondering what the newest planet to be discovered is. Well, that depends on your frame of reference. If we are ...

Catching Earth at aphelion

33 minutes ago

Do you feel a little… distant today? The day after the 4th of July weekend brings with it the promise of barbecue leftovers and discount fireworks. It also sees our fair planet at aphelion, or its farthest ...

Opportunity's 7th Mars winter to include new study area

1 hour ago

Operators of NASA's Mars Exploration Rover Opportunity plan to drive the rover into a valley this month where Opportunity will be active through the long-lived rover's seventh Martian winter, examining outcrops ...

Transition discs in Ophiuchus and Taurus

1 hour ago

A star is typically born with a disk of gas and dust encircling it, from which planets develop as dust grains in the disk collide, stick together and grow. These disks, warmed by the star to a range of temperatures ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.