Finding the True Measure of Nanoscale 'Roughness'

June 16, 2005
Finding the True Measure of Nanoscale 'Roughness'

Straight edges, good. Wavy edges, bad. This simple description holds true whether you are painting the living room or manufacturing nanoscale circuit features.
In a technical paper* published in June, researchers at the National Institute of Standards and Technology (NIST) and SEMATECH describe an improved method for determining nanoscale "linewidth roughness," an important quality control factor in semiconductor fabrication. Their research shows that current industry measurement methods may be exaggerating roughness of the smoothest circuit features by 40 percent or more above true values.

Image: A colorized scanning electron microscope image shows the "waviness" or roughness of edges on reference lines made of silicon that are about 100 nanometers wide. Credit: B. Bunday, SEMATECH/K. Talbott, NIST

As circuit features shrink in size to below 50 nanometers, wavy or rough edges within semiconductor transistors may cause circuit current losses or may prevent the devices from reliably turning on and off with the same amount of voltage.

"With this type of measurement," says NIST's John Villarrubia, "besides the real roughness there is also a false roughness caused by measurement noise. Our method includes a correction to remove bias or systematic error from the measurement."

Random noise, by definition, causes the measured value to be sometimes higher, sometimes lower than the true value, and can be minimized by simply averaging an adequate number of measurements. Systematic error, however, is consistently above or consistently below the true value due to some quirk of the measurement method.

The noise in nanoscale scanning electron microscope (SEM) images consistently adds extra roughness, says Villarrubia. The NIST/SEMATECH method involves taking two or more images at exactly the same location on a circuit feature, comparing the values, and subtracting the false roughness caused by measurement noise. SEM manufacturers should be able to incorporate the new method into their proprietary software for automated linewidth roughness measurements.

* J.S. Villarrubia and B.D. Bunday, Unbiased Estimation of Linewidth Roughness, Proceedings of SPIE 5752 (2005) pp. 480-488.

Source: NIST

Explore further: 3-D nanostructure of a bone made visible

Related Stories

3-D nanostructure of a bone made visible

November 19, 2015

Bones are made up of tiny fibres that are roughly a thousand times finer than a human hair. One major feature of these so-called collagen fibrils is that they are ordered and aligned differently depending on the part of the ...

Women not very involved in civic affairs on Facebook

November 5, 2015

A new study has been checking what 20 million users like on Facebook. Its conclusion is that men are interested in politics, women in the environment. Young Norwegian women are among the least involved in civic affairs in ...

Sensing small molecules may revolutionize drug design

October 23, 2015

Most pharmaceutical drugs consist of tiny molecules, which target a class of proteins found on the surfaces of cell membranes. Studying these subtle interactions is essential for the design of effective drugs, but the task ...

Recommended for you

Fighting climate change with 'poop power'

December 2, 2015

The stench of clogged toilets fills the air at the US capital's wastewater treatment facility. And for good reason—it's one of the world's largest projects to transform human waste into electricity.

Roboticists learn to teach robots from babies

December 1, 2015

Babies learn about the world by exploring how their bodies move in space, grabbing toys, pushing things off tables and by watching and imitating what adults are doing.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.