Spitzer Captures Echo Of Dead Star's Rumblings

June 9, 2005
Spitzer Captures Echo Of Dead Star's Rumblings

An enormous light echo etched in the sky by a fitful dead star was spotted by the infrared eyes of NASA's Spitzer Space Telescope.
The surprising finding indicates Cassiopeia A, the remnant of a star that died in a supernova explosion 325 years ago, is not resting peacefully. Instead, this dead star likely shot out at least one burst of energy as recently as 50 years ago.

Image: Cassiopeia A: Death Becomes Her. Credit: NASA/JPL-Caltech/O. Krause (Steward Observatory)

"We had thought the stellar remains inside Cassiopeia A were just fading away," said Dr. Oliver Krause, University of Arizona, Tucson. "Spitzer came along and showed us this exploded star, one of the most intensively studied objects in the sky, is still undergoing death throes before heading to its final grave," he added.

Infrared echoes trace the dusty journeys of light waves blasted away from supernova or erupting stars. As the light waves move outward, they heat up clumps of surrounding dust causing them to glow in infrared light. The echo from Cassiopeia A is the first witnessed around a long-dead star and the largest ever seen. It was discovered by accident during a Spitzer instrument test.

"We had no idea that Spitzer would ever see light echoes," said Dr. George Rieke of the University of Arizona. "Sometimes you just trip over the biggest discoveries."

A supernova remnant like Cassiopeia A typically consists of an outer, shimmering shell of expelled material and a core skeleton of a once-massive star, called a neutron star. Neutron stars come in several varieties ranging from intensely active to silent. Typically, a star that has recently died will continue to act up. Consequently, astronomers were puzzled the star responsible for Cassiopeia A appeared to be silent so soon after its death.

The new infrared echo indicates the Cassiopeia A neutron star is active and suggests it may be an exotic, spastic type of object called a magnetar. Magnetars are like screaming dead stars, with eruptive surfaces that rupture and quake, pouring out tremendous amounts of high-energy gamma rays. Spitzer may have captured the "shriek" of such a star in the form of light zipping away through space and heating up its surroundings.

"Magnetars are very rare and hard to study, especially if they are no longer associated with their place of origin. If we have indeed uncovered one, then it will be just about the only one for which we know what kind of star it came from and when," Rieke said.

Astronomers first saw hints of the infrared echo in strange, tangled dust features that showed up in the Spitzer test image. When they looked at the same dust features again a few months later using ground-based telescopes, the dust appeared to be moving outward at the speed of light. Follow-up Spitzer observations taken one year later revealed the dust was not moving, but it was lit up by passing light.

A close inspection of the Spitzer pictures revealed a blend of at least two light echoes around Cassiopeia A, one from its supernova explosion, and one from a hiccup of activity that occurred around 1953. Additional Spitzer observations of these light echoes may help pin down their enigmatic source.

JPL manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate. Science operations are conducted at the Spitzer Science Center, California Institute of Technology, Pasadena, Calif. Krause was lead author with Rieke of a study about the discovery appearing this week in the journal Science.

Source: NASA

Explore further: Black hole is 30 times expected size

Related Stories

Black hole is 30 times expected size

September 24, 2015

The central supermassive black hole of a recently discovered galaxy is far larger than should be possible, according to current theories of galactic evolution. New work, carried out by astronomers at Keele University and ...

Astronomers find galaxy cluster with bursting heart

September 10, 2015

An international team of astronomers has discovered a gargantuan galaxy cluster with a core bursting with new stars - an incredibly rare find. The discovery, made with the help of the NASA/ESA Hubble Space Telescope, is the ...

Astronomers detect the farthest galaxy yet with Keck telescope

September 4, 2015

A team of Caltech researchers that has spent years searching for the earliest objects in the universe now reports the detection of what may be the most distant galaxy ever found. In an article published August 28, 2015 in Astrophysical ...

New record: Keck Observatory measures most distant galaxy

August 6, 2015

A team of astrophysicists using the W. M. Keck Observatory in Hawaii has successfully measured the farthest galaxy ever recorded and more interestingly, captured its hydrogen emission as seen when the Universe was less than ...

Recommended for you

The dark side of Nobel prizewinning research

October 4, 2015

Think of the Nobel prizes and you think of groundbreaking research bettering mankind, but the awards have also honoured some quite unhumanitarian inventions such as chemical weapons, DDT and lobotomies.

Internet giants race to faster mobile news apps

October 4, 2015

US tech giants are turning to the news in their competition for mobile users, developing new, faster ways to deliver content, but the benefits for struggling media outlets remain unclear.

Trade in invasive plants is blossoming

October 3, 2015

Every day, hundreds of different plant species—many of them listed as invasive—are traded online worldwide on auction platforms. This exacerbates the problem of uncontrollable biological invasions.

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.