Rensselaer Experiment Finds Water Molecules Are Always H2O

June 13, 2005

Researchers at Rensselaer Polytechnic Institute and Ben-Gurion University in Israel have published results of a new experiment that found water molecules are made up of two hydrogen atoms and one oxygen atom, even during very short time intervals. The results dispute previous claims made by another research group suggesting a change in the chemical formula of water.
A research group from Technical University of Berlin, Rutherford Laboratory near Oxford, and Uppsala University in Sweden had previously published research findings indicating that water behaves as if it has lost half a hydrogen atom at very brief time intervals, briefly changing the chemical formula from H2O to H1.5O.

The effect was revealed through a strong neutron scattering anomaly, which they claimed to have observed.

To address the problem, Rensselaer-Ben-Gurion researchers used neutrons, produced by the electron linear accelerator at Rensselaer’s Gaerttner LINAC Laboratory, to compare the scattering of neutrons from light water molecules (H2O) and heavy water molecules (D2O). Researchers found that the scattering of neutrons behaved normally and they did not detect any deficiency in the effective number of hydrogen atoms in the water molecules. The exposure time of neutrons to the hydrogen nucleus during these experiments was less than 0.001 femtoseconds. A femtosecond is one quadrillionth of a second or 10-15 second.

“This new experiment provides evidence that water is accurately described as H2O, even at very short time intervals,” said Raymond Moreh, visiting scholar in Rensselaer’s nuclear engineering and engineering physics program and professor of physics at Ben-Gurion University. “The strong neutron scattering anomaly claimed by an earlier group was not found in our research. Our new finding has far-reaching and profound effects in physics and chemistry.”

The members of the Rensselaer research team were: Robert Block, director of the Gaerttner LINAC Laboratory and professor emeritus of nuclear engineering; Yaron Danon, assistant professor of nuclear engineering; and Matthew Neuman, senior undergraduate student in nuclear engineering.

The research findings were published in Physical Review Letters on May 13 in a paper titled “Search for Anomalous Scattering of keV Neutrons from H2O-D2O Mixtures.”

Source: Rensselaer Polytechnic Institute

Explore further: Better understanding of light harvesting may benefit agriculture

Related Stories

Designing climate-friendly concrete, from the nanoscale up

July 22, 2016

An MIT-led team has defined the nanoscale forces that control how particles pack together during the formation of cement "paste," the material that holds together concrete and causes that ubiquitous construction material ...

Mixing topology and spin

July 20, 2016

In the pursuit of material platforms for the next generation of electronics, scientists are studying new compounds such as topological insulators (TIs), which support protected electron states on the surfaces of crystals ...

Keep a lid on it: Geologists probe geological carbon storage

July 28, 2016

Effective carbon capture and storage or "CCS" in underground reservoirs is one possible way to meet ambitious climate change targets demanded by countries and international partnerships around the world. But are current technologies ...

Recommended for you

First stars formed even later than previously thought

August 31, 2016

ESA's Planck satellite has revealed that the first stars in the Universe started forming later than previous observations of the Cosmic Microwave Background indicated. This new analysis also shows that these stars were the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.