A look at the future of nanoelectronics

Jun 14, 2005

14-06-2005 - Kyoto, Japan -- Gilbert Declerck, President & CEO IMEC at the VLSI 2005 symposium 2005:
"If we manage in handling the giga-complexity of the 'More Moore' world and in showing ultra-creativity for the 'More than Moore' world, than we will be able to realize networked computing and communication devices that will help humans reach their dreams."

Many people involved in the IC business nostalgically think back to the days of happy scaling when ‘simple’ transistor miniaturization went hand in hand with higher performances and lower costs. These days are over. Instead we are confronted with short-channel effects and leakage problems leading to a ‘power catastrophe’ in future ICs. Rather complex technological innovations such as new device architectures and multiple-gate devices, high-k materials, metal gates and strained silicon, are needed. Next to this power dissipation problem, engineers are dazzled with an increasing intra-die variability for which no obvious cure exists from a technological point of view.

For these and other problems, a strong interaction is needed between process engineers and system designers. No longer can they continue on ‘living apart together’, but they have to join forces and discuss on how they can circumvent certain problems, TOGETHER. For example, to tackle the problem of intra-die variability, system designers will have to come up with new methods to design reliable electronic systems out of these ‘unreliable’ components. Parallel or multi-task architectures must help in realizing power-efficient systems. And also lithographers and designers have to learn speaking each other’s language to put a stop to the increasing complexity in lithography techniques, for example by designing highly regular cell and interconnect architectures reducing mask/design cost, and litho-friendly layouts improving printability. Nanotechnology will play a key role in the ultimate fulfillment of Moore’s law. Carbon nanotubes and semiconducting nanowires are considered as possible gateways to the final shrink that will end the scaling around 5nm physical gate length.

But not only is there the transition from the ‘era of happy scaling’ to the more challenging ultimate-CMOS era, there is also a changing society impacting the demands put on the IC industry. Until 2000 the technological advancements in the IC world were driven by the growing computing power of the PC. But in the post-PC world in which we are living today, people want ‘smart’ home and car appliances, portable devices enabling secure trustworthy computing and communication at any place and at any time. The medical world and its patients want sensor networks allowing more safety, living comfort and better health monitoring. The post-PC world is an Ambient Intelligence world.

This embedded-everywhere world surely needs ‘More Moore’ or the continuation of the miniaturization process to provide the needed computing and memory functionalities. However, focus no longer is on faster computing but instead, power-efficiency and flexibility are the main targets. The most innovative aspect of Ambient Intelligence, namely the interaction of the devices with the user and the ambient, requires ‘More than Moore’, referring to technologies emerging around CMOS: RF, passives, MEMS, sensors, power devices, displays etc. Nanotechnology based on the interaction between engineers, physicists, chemists, biologists and medical doctors will be a key enabler to expand CMOS technology in this way. A striking example of this can be found in the field of biosensors and neurons-on-chip where surface chemistry is used to bridge the gap between the seeming chaos of living tissue and the planar geometry of microelectronics. Whereas the ‘More Moore’ world requires mastering giga-complexity, the ‘More than Moore’ world demands for ultra-creativity inspired by a multitude of technologies.

For sure we face challenging times, but at the same time future has never been so exciting for the scientist with a sharp eye and an open mind. And the outlook is fascinating: more than ever will computing and communication devices, their networks and everything they connect, help humans reach their dreams.

IMEC

Explore further: A better way to build DNA scaffolds

Related Stories

From massive supercomputers come tiniest transistors

Mar 04, 2015

A relentless global effort to shrink transistors has made computers continually faster, cheaper and smaller over the last 40 years. This effort has enabled chipmakers to double the number of transistors on ...

Recommended for you

A better way to build DNA scaffolds

10 hours ago

Imagine taking strands of DNA - the material in our cells that determines how we look and function - and using it to build tiny structures that can deliver drugs to targets within the body or take electronic ...

Nanotechnology used to make watch case

14 hours ago

It's one thing to take a Swiss watch to Switzerland, quite another to impress the locals. Australian company Bausele recently did just that, thanks to some clever thinking at Flinders University in South ...

Researchers exploring spintronics in graphene

15 hours ago

Electronics is based on the manipulation of electrons and other charge carriers, but in addition to charge, electrons possess a property known as spin. When spin is manipulated with magnetic and electric ...

Two-dimensional material seems to disappear, but doesn't

May 05, 2015

(Phys.org)—When exposed to air, a luminescent 2D material called molybdenum telluride (MoTe2) appears to decompose within a couple days, losing its optical contrast and becoming virtually transparent. But when s ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.