UCLA researchers create nuclear fusion in lab

May 1, 2005

Attempts to create controlled nuclear fusion - the process that powers stars - have been a source of continuing controversy. Scientists have struggled for decades to effectively harness nuclear fusion in hot plasma for energy generation - potentially a cleaner alternative to the current nuclear-fission reactors - but have so far been unsuccessful at turning this into an economically viable process.
Meanwhile, claims of cheap "bench-top" fusion by electrolysis of heavy water ("cold fusion") and by sonic bubble-formation in water (sonoluminescence) have been greeted with skepticism, and have not been successfully reproduced.
In this week's Nature, Brian Naranjo and colleagues report a new kind of "bench-top" nuclear fusion, based on measurements that seem considerably more convincing than these previous claims.

The publication was written by a UCLA team that includes Brian Naranjo, a graduate student in physics; James Gimzewski, professor of chemistry; and Seth Putterman, professor of physics. Gimzewski and Putterman are members of the California NanoSystems Institute at UCLA.

The team initiates fusion of deuterium β€” heavy hydrogen, the fuel used in conventional plasma fusion research β€” using the strong electric field generated in a pyroelectric crystal. Such materials produce electric fields when heated, and the researchers concentrated this field at the tip of a tungsten needle connected to the crystal. In an atmosphere of deuterium gas, this generates positively charged deuteron ions and accelerates them to high energy in a beam.

When this beam strikes a target of erbium deuteride, Naranjo and colleagues detect neutrons coming from the target with precisely the energy expected if they were generated by the nuclear fusion of two deuterium nuclei. The neutron emission is 400 times stronger than the usual background level.

The researchers say that this method of producing nuclear fusion won't be useful for normal power generation, but it might find applications in the generation of neutron beams for research purposes, and perhaps as a propulsion mechanism for miniature spacecraft.

Publication: The Journal Nature, April 28, 2005 "Observation of Nuclear Fusion Driven by a Pyroelectric Crystal"

For more information about the project, visit rodan.physics.ucla.edu/pyrofusion

Source: UCLA

Explore further: Neural qubits: Quantum cognition based on synaptic nuclear spins

Related Stories

Code speedup strengthens researchers' grasp of neutrons

August 18, 2015

Neutrons are notoriously slippery subatomic particles. On their own, they break down in a matter of minutes, but within the confines of the atom's nucleus, neutrons are a foundational piece of nearly all known types of matter ...

How massive can black holes get?

August 11, 2015

Without the light pressure from nuclear fusion to hold back the mass of the star, the outer layers compress inward in an instant. The star dies, exploding violently as a supernova.

Recommended for you

New method facilitates research on fuel cell catalysts

October 8, 2015

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst ...

Ancient genome from Africa sequenced for the first time

October 8, 2015

The first ancient human genome from Africa to be sequenced has revealed that a wave of migration back into Africa from Western Eurasia around 3,000 years ago was up to twice as significant as previously thought, and affected ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.