TI Introduces Industry's Smallest LVPECL/LVDS Oscillator Buffers

March 3, 2005

Texas Instruments Incorporated (TI) today introduced eight new high gain output oscillator buffers. Measuring just 2 x 2 x 0.55 mm, the new oscillator products enable designers to save space while also minimizing jitter and power consumption. The devices provide differential signal output in low-voltage differential signaling (LVDS) or low-voltage pseudo emitter-coupled logic (LVPECL) and clock signal amplification for telecommunications switching equipment.

The SN65LVDS16/17/18/19 and SN65LVP16/17/18/19 are high-frequency oscillator gain stage buffers supporting LVDS and LVPECL on the high gain outputs in 3.3-V or 2.5-V systems. The devices afford oscillator designers their choice of rise times: 2 Gbps (LVDS/LVP16 and LVDS/LVP17) and 1 Gbps (LVDS/LVP18 and LVDS/LVP 19). In addition, the family provides the option of both single-ended input on the LVDS/LVP16 and LVDS/LVP18 and fully differential inputs on the LVDS/LVP17 and LVDS/LVP19. The LVDS/LVP16 and LVDS/LVP18 provide three gain control options from 300 mV to 860 mV, allowing the designer to optimize the buffer based on system needs.

The new devices offer 3.3-V and 2.5-V operation, enabling designers to migrate seamlessly to 2.5-V supply as system needs dictate. Each device offers power savings when compared to the nearest competition, with power reductions ranging from 15 percent to 66 percent. For example, the LVP18/19 each uses only 50 mW, about one-third the power consumption of comparable devices.

The new devices join other TI oscillator products such as the CDCM1802/04. These mixed-output low-voltage PECL and low-voltage transistor-to-transistor (LVTTL) devices provide timing module and voltage-controlled crystal oscillator designers integrated low-voltage PECL and LVTTL outputs in a 3 x 3 mm and 4 x 4 mm package, respectively. This is especially useful for designers who need a LVTTL feedback in their PLL module design. The buffers also include multiple divider options, which are chosen through external select pins. The devices are well-suited for communications applications.

Explore further: Twin paradox on a chip

Related Stories

Twin paradox on a chip

August 19, 2015

Per Delsing and his team want to combine theoretical calculations with experiments on superconducting circuits to gain an understanding of how things fit together at the nano level. Among other things, they plan to simulate ...

A suspension revolution in Formula I Motorsport

August 5, 2015

A Cambridge academic equipped with no more than a pencil and paper invented a completely new suspension component which led to a unique story featuring code names, Formula 1 victories and claims of industrial espionage.

New device converts DC electric field to terahertz radiation

August 4, 2015

Terahertz radiation, the no-man's land of the electromagnetic spectrum, has long stymied researchers. Optical technologies can finagle light in the shorter-wavelength visible and infrared range, while electromagnetic techniques ...

Fast times and hot spots in plasmonic nanostructures

August 4, 2015

The ability to control the time-resolved optical responses of hybrid plasmonic nanostructures was demonstrated by a team led by scientists in the Nanophotonics Group at the Center for Nanoscale Materials including collaborators ...

Recommended for you

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

Interactive tool lifts veil on the cost of nuclear energy

August 24, 2015

Despite the ever-changing landscape of energy economics, subject to the influence of new technologies and geopolitics, a new tool promises to root discussions about the cost of nuclear energy in hard evidence rather than ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.