TI Introduces Industry's Smallest LVPECL/LVDS Oscillator Buffers

March 3, 2005

Texas Instruments Incorporated (TI) today introduced eight new high gain output oscillator buffers. Measuring just 2 x 2 x 0.55 mm, the new oscillator products enable designers to save space while also minimizing jitter and power consumption. The devices provide differential signal output in low-voltage differential signaling (LVDS) or low-voltage pseudo emitter-coupled logic (LVPECL) and clock signal amplification for telecommunications switching equipment.

The SN65LVDS16/17/18/19 and SN65LVP16/17/18/19 are high-frequency oscillator gain stage buffers supporting LVDS and LVPECL on the high gain outputs in 3.3-V or 2.5-V systems. The devices afford oscillator designers their choice of rise times: 2 Gbps (LVDS/LVP16 and LVDS/LVP17) and 1 Gbps (LVDS/LVP18 and LVDS/LVP 19). In addition, the family provides the option of both single-ended input on the LVDS/LVP16 and LVDS/LVP18 and fully differential inputs on the LVDS/LVP17 and LVDS/LVP19. The LVDS/LVP16 and LVDS/LVP18 provide three gain control options from 300 mV to 860 mV, allowing the designer to optimize the buffer based on system needs.

The new devices offer 3.3-V and 2.5-V operation, enabling designers to migrate seamlessly to 2.5-V supply as system needs dictate. Each device offers power savings when compared to the nearest competition, with power reductions ranging from 15 percent to 66 percent. For example, the LVP18/19 each uses only 50 mW, about one-third the power consumption of comparable devices.

The new devices join other TI oscillator products such as the CDCM1802/04. These mixed-output low-voltage PECL and low-voltage transistor-to-transistor (LVTTL) devices provide timing module and voltage-controlled crystal oscillator designers integrated low-voltage PECL and LVTTL outputs in a 3 x 3 mm and 4 x 4 mm package, respectively. This is especially useful for designers who need a LVTTL feedback in their PLL module design. The buffers also include multiple divider options, which are chosen through external select pins. The devices are well-suited for communications applications.

Explore further: No batteries required: The first autonomous, entirely soft robot

Related Stories

Innovative device simulates cataract replacement experience

August 18, 2016

Today, patients with cataracts can choose from several types of artificial lenses, which are surgically implanted in the eye to replace cloudy lenses that obstruct vision. A new vision simulator could help these patients ...

'Sniffer plasmons' could detect explosives

August 16, 2016

Physicists from the Moscow Institute of Physics and Technology (MIPT) have found that graphene might be the ideal material for manufacturing plasmonic devices capable of detecting explosive materials, toxic chemicals, and ...

3-D Galaxy-mapping project enters construction phase

August 9, 2016

A 3-D sky-mapping project that will measure the light of millions of galaxies has received formal—approval from the U.S. Department of Energy to move forward with construction. Installation of the project, called DESI (Dark ...

Recommended for you

Force triggers gene expression by stretching chromatin

August 26, 2016

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.