Study Bolsters Greenhouse Effect Theory, Solves Ice Age Mystery

January 27, 2005

Critics who dismiss the importance of greenhouse gases as a cause of climate change lost one piece of ammunition this week. In a new study, scientists found further evidence of the role that greenhouse gases have played in Earth’s climate.
In Thursday’s issue of the journal Geology, Ohio State University scientists report that a long-ago ice age occurred 10 million years earlier than once thought. The new date clears up an inconsistency that has dogged climate change research for years.

Of three ice ages that occurred in the last half-billion years, the earliest ice age posed problems for scientists, explained Matthew Saltzman, assistant professor of geological sciences at Ohio State.

Previous studies suggested that this particular ice age happened during a time that should have been very warm, when volcanoes all over the earth’s surface were spewing carbon dioxide (CO2) and other heat-trapping greenhouse gases into the atmosphere.

With CO2 levels as much as 20 times higher than today, the late Ordovician period (460-440 million years ago) wasn’t a good time for growing ice.

Critics have pointed to the inconsistency as a flaw in scientists’ theories of climate change. Scientists have argued that today’s global climate change has been caused in part by buildup of CO2 in the atmosphere resulting from fossil fuel emissions.

But, critics have countered, if CO2 truly raises global temperatures, how could an ice age have occurred when a greenhouse effect much greater than today’s was in full swing?

The answer: This particular ice age didn’t begin when CO2 was at its peak -- it began 10 million years earlier, when CO2 levels were at a low.

“Our results are consistent with the notion that CO2 concentrations drive climate.”

Saltzman and doctoral student Seth Young found that large deposits of quartz sand in Nevada and two sites in Europe -- Norway and Estonia -- formed around the same time, 440 million years ago. The scientists suspect that the sand formed when water levels fell low enough to expose quartz rock, so that wind and rain could weather the rock into sand.

The fact that the deposits were found in three different sites suggests that sea levels may have been low all over the world at that time, likely because much of the planet’s water was bound in ice at the poles, Saltzman said.

Next, the scientists examined limestone sediments from the sites and determined that there was a relatively large amount of organic carbon buried in the oceans -- and, by extension, relatively little CO2 in the atmosphere -- at the same time.

Taken together, the evidence suggests that the ice began to build up some 10 million years earlier than when volcanoes began pumping the atmosphere full of the CO2 that ended the Ordovician ice age.

For Saltzman, the find solves a long-standing mystery.

Though scientists know with a great degree of certainty that atmospheric CO2 levels drive climate change, there are certain mismatches in the geologic record, such as the Ordovician ice age -- originally thought to have begun 443 million years ago -- that seem to counter that view.

“How can you have ice when CO2 levels are through the roof? That was the dilemma that we were faced with. I think that now we have good evidence that resolves this mismatch,” Saltzman said.

Scientists at the three sites previously attributed these quartz deposits to local tectonic shifts. But the new study shows that the conditions that allowed the quartz sand to form were not local.

“If sea level is dropping globally at the same time, it can’t be a local tectonic feature,” Saltzman said. “It’s got to be the result of a global ice buildup.”

Saltzman wants to bolster these new results by examining sites in Russia -- where he hopes to find more evidence of sea level drop -- and in parts of South America and North Africa, which would have been covered in ice at the time.

Source: Ohio State University

Explore further: Polar ice reveals secrets of carbon-climate feedbacks

Related Stories

New Antarctic ice discovery aids future climate predictions

August 16, 2016

A team of British climate scientists comparing today's environment with the warm period before the last ice age has discovered a 65% reduction of Antarctic sea ice around 128,000 years ago. The finding is an important contribution ...

Does a planet need plate tectonics to develop life?

June 29, 2016

Plate tectonics may be a phase in the evolution of planets that has implications for the habitability of exoplanets, according to new research published this month in the journal Physics of the Earth and Planetary Interiors.

Recommended for you

Rocky planet found orbiting habitable zone of nearest star

August 24, 2016

An international team of astronomers including Carnegie's Paul Butler has found clear evidence of a planet orbiting Proxima Centauri, the closest star to our Solar System. The new world, designated Proxima b, orbits its cool ...

Feeling the force between sand grains

August 24, 2016

For the first time, Lawrence Livermore National Laboratory (LLNL) researchers have measured how forces move through 3D granular materials, determining how this important class of materials might pack and behave in processes ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

jeffsaunders
not rated yet Jun 16, 2009
not as well thought or expressed as this article about a different ice age.

http://www.physor...670.html

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.