Matsushita Develops the AlGaN/GaN Power FET on Silicon Substrate

December 15, 2004
Matsushita Develops the AlGaN/GaN Power FET on Silicon Substrate

Matsushita's novel technology achieves a low-cost, low-loss fast switching device with 1/10 on-state resistance of Si power MOS

Matsushita Electric Industrial Co., Ltd., best known for its Panasonic brand products, today announced the development of a new transistor to revolutionize switching devices. The new transistor can be used as a low-loss power switching device in applications like inverters for home electric appliances, hybrid cars and switching power supplies.

The AlGaN/GaN power FET is an aluminum gallium nitride (AlGaN)/gallium nitride (GaN) field effect transistor (FET) fabricated on an inexpensive silicon. The transistor uses Panasonic's own crystal growing technology and GaN materials that have over 10 times the breakdown voltage and below 1/5 lower resistance of existing silicon (Si). As a result, it has achieved a 350 V breakdown voltage, same as Si power metal-oxide-semiconductors (MOS), a very low specific on-state resistance of 1.9 m Ohm cm2 (below 1/10 of Si power MOS), and high-speed power switching of less than 0.1 nanosecond (below 1/100 of Si power MOS). The transistor also has a current handling capability of 150 A (over five times that of Si power MOS).

Just one of these new transistors can substitute more than 10 parallel-connecting Si power MOSFETs, contributing significantly to power savings and miniaturization of electronic products. By adopting silicon substrates, the material cost is drastically reduced to less than 1/100 of silicon carbide (SiC) power MOSFETs.

The new AlGaN/GaN power FET is the result of development of Panasonic's source-via-grounding (SVG) structure technology where the transistor source electrode is connected to the Si substrate through holes formed on the surface side. This eliminates source wires, bonding and pads from the substrate surface. Consequently, the chip size and wire inductance are significantly reduced.

An AlN/AlGaN buffer layer grown at a high temperature and an AlN/GaN multi-layer film are used on the first layer to reduce defect density on the Si substrate and improve the heterojunction interface quality. Panasonic developed the GaN growth technology in partnership with Professor Takashi Egawa of the Research Center for Nano-Device and System, Nagoya Institute of Technology. The new technology has been vital in making the new high power AlGaN/GaN FET.

By successfully growing GaN on an Si substrate, Panasonic responded, for the first time in the world, to the needs for low-loss switching devices that combine both high breakdown voltage and low specific on-state resistance. It was becoming increasingly difficult for current Si power MOSFETs to fulfill the needs.

Matsushita Electric Industrial Co., Ltd. has applied for 39 patents in Japan and 26 patents overseas on the new transistor.

The results of this development will be presented at the International Electron Devices Meeting (IEDM) 2004 held in San Francisco from December 13 to 15, 2004.

Explore further: 'Bubble piano' plays bubbles in sync with Beethoven symphony

Related Stories

'Bubble piano' plays bubbles in sync with Beethoven symphony

November 3, 2015

(—Calling it an "Ode to Bubbles," MIT researchers have produced bubbling in sync with Beethoven's Symphony No. 9: Ode to Joy on a surface resembling a piano keyboard. The performance demonstrates the researchers' ...

A random access memory for storing living cells

September 15, 2015

Advances in circuits typically refer to breakthroughs in computers, cell phones, and other advanced electronic devices. However, a more general notion of circuits refers to any integrated system which can move objects along ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.