NSF awards NJIT physicist $832,927 to study radio waves

Sep 27, 2004

Solar physicists want to know more about the sun's magnetic fields because they are cited as the cause behind potentially damaging outbursts such as solar flares and coronal mass ejections. Such ejections sometimes throw matter and magnetic fields toward Earth that can cause dangerous radiation levels in space, and, if they hit Earth, will trigger magnetic storms.

The National Science Foundation (NSF) has awarded Dale Gary, PhD, professor of physics at New Jersey Institute of Technology (NJIT) $832,927 to continue his research to develop a global network of 100 radio telescopes to learn more about radio waves from the sun. NSF awarded Gary $400,000 for this project in 2002. Radio waves are one means of studying the sun's magnetic fields. In astronomy circles, Gary's project has come to be known as the Frequency Agile Solar Radiotelescope (FASR) consortium.

"The FASR consortium will ultimately create 100 receiving satellite dishes," said Gary. "For now, however, we're still testing data to see the best way to build these telescopes. "That's why we're calling this current project a FASR test-bed. From it, we hope to learn more about how to design and build FASR, but we will also do some new solar science.

Project goals include the construction of a broadband (eight GHz), digital three-element interferometer system. The funding will also support research into broadband radio observations such as how to eliminate radio frequency interference. The rise in cell phones, wireless data systems, and communication satellites has made radio astronomy more of a challenge.

Gary and his team will build the new apparatus onto his solar telescope in his laboratory at Owens Valley, CA. Gary is part of a group of solar physicists at NJIT who are associated with Big Bear Solar Observatory (BBSO) in Big Bear, CA, managed by NJIT Distinguished Professor of Physics Phil Goode. Gary's laboratory is located near Big Bear. In 1997, NJIT took over management of BBSO from California Institute of Technology.

Magnetic storms are fueled by the collision between the coronal mass ejections and Earth's magnetic field. The collisions cause auroras, or northern lights, in regions normally limited to the Earth's poles. Particularly severe storms cause the auroras to spread southward and if they do, they can destroy power transformers and disrupt some forms of radio communication.

"Until very recently, magnetic storms have been difficult to predict," said Gary. There are many people, though, who want to know more about such patterns. Doing a better job of predicting the solar causes of these storms is one of the goals of the FASR facility.

Magnetic storms can impact airline flights, because they produce dangerous levels of radiation for crews who regularly fly certain routes. Crews, traversing Siberia, a known target for storms, are vulnerable. "Suddenly we see an increasing interest in learning how to forecast solar storms because airlines, aiming to protect employees, prefer to steer clear of them," said Gary. Space forecasters, who provide information on the space environment, and satellite operators, who use radio waves for communications broadcasts, also need the information. Power plant operators are also concerned.

Source: New Jersey Institute of Technology

Explore further: Ceres bright spots sharpen but questions remain

Related Stories

Protecting Earth from space weather

Mar 20, 2015

This week's spectacular glowing auroras in the night sky further south than usual highlighted the effect that 'space weather' can have on Earth.

Stanford pair helping predict solar storms

Feb 19, 2015

Life as a forecaster is not easy. Just ask National Weather Service forecasters who misjudged how a recent winter storm would impact the Big Apple. Now imagine trying to predict weather activity on a burning ...

Recommended for you

Ceres bright spots sharpen but questions remain

8 hours ago

The latest views of Ceres' enigmatic white spots are sharper and clearer, but it's obvious that Dawn will have to descend much lower before we'll see crucial details hidden in this overexposed splatter of ...

What are extrasolar planets?

8 hours ago

For countless generations, human beings have looked out at the night sky and wondered if they were alone in the universe. With the discovery of other planets in our solar system, the true extent of the Milky ...

Rosetta's view of a comet's "great divide"

8 hours ago

The latest image to be revealed of comet 67P/Churyumov-Gerasimenko comes from October 27, 2014, before the Philae lander even departed for its surface. Above we get a view of a dramatically-shadowed cliff ...

How long will our spacecraft survive?

9 hours ago

There are many hazards out there, eager to disrupt and dismantle the mighty machines we send out into space. How long can they survive to perform their important missions?

Why roundworms are ideal for space studies

9 hours ago

Humans have long been fascinated by the cosmos. Ancient cave paintings show that we've been thinking about space for much of the history of our species. The popularity of recent sci-fi movies suggest that ...

A curious family of giant exoplanets

9 hours ago

There are 565 exoplanets currently known that are as massive as Jupiter or bigger, about one third of the total known, confirmed exoplanet population. About one quarter of the massive population orbits very ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.