NSF awards NJIT physicist $832,927 to study radio waves

September 27, 2004

Solar physicists want to know more about the sun's magnetic fields because they are cited as the cause behind potentially damaging outbursts such as solar flares and coronal mass ejections. Such ejections sometimes throw matter and magnetic fields toward Earth that can cause dangerous radiation levels in space, and, if they hit Earth, will trigger magnetic storms.

The National Science Foundation (NSF) has awarded Dale Gary, PhD, professor of physics at New Jersey Institute of Technology (NJIT) $832,927 to continue his research to develop a global network of 100 radio telescopes to learn more about radio waves from the sun. NSF awarded Gary $400,000 for this project in 2002. Radio waves are one means of studying the sun's magnetic fields. In astronomy circles, Gary's project has come to be known as the Frequency Agile Solar Radiotelescope (FASR) consortium.

"The FASR consortium will ultimately create 100 receiving satellite dishes," said Gary. "For now, however, we're still testing data to see the best way to build these telescopes. "That's why we're calling this current project a FASR test-bed. From it, we hope to learn more about how to design and build FASR, but we will also do some new solar science.

Project goals include the construction of a broadband (eight GHz), digital three-element interferometer system. The funding will also support research into broadband radio observations such as how to eliminate radio frequency interference. The rise in cell phones, wireless data systems, and communication satellites has made radio astronomy more of a challenge.

Gary and his team will build the new apparatus onto his solar telescope in his laboratory at Owens Valley, CA. Gary is part of a group of solar physicists at NJIT who are associated with Big Bear Solar Observatory (BBSO) in Big Bear, CA, managed by NJIT Distinguished Professor of Physics Phil Goode. Gary's laboratory is located near Big Bear. In 1997, NJIT took over management of BBSO from California Institute of Technology.

Magnetic storms are fueled by the collision between the coronal mass ejections and Earth's magnetic field. The collisions cause auroras, or northern lights, in regions normally limited to the Earth's poles. Particularly severe storms cause the auroras to spread southward and if they do, they can destroy power transformers and disrupt some forms of radio communication.

"Until very recently, magnetic storms have been difficult to predict," said Gary. There are many people, though, who want to know more about such patterns. Doing a better job of predicting the solar causes of these storms is one of the goals of the FASR facility.

Magnetic storms can impact airline flights, because they produce dangerous levels of radiation for crews who regularly fly certain routes. Crews, traversing Siberia, a known target for storms, are vulnerable. "Suddenly we see an increasing interest in learning how to forecast solar storms because airlines, aiming to protect employees, prefer to steer clear of them," said Gary. Space forecasters, who provide information on the space environment, and satellite operators, who use radio waves for communications broadcasts, also need the information. Power plant operators are also concerned.

Source: New Jersey Institute of Technology

Explore further: The gas giant Jupiter

Related Stories

The gas giant Jupiter

August 26, 2015

Ever since the invention of the telescope four hundred years ago, astronomers have been fascinated by the gas giant known as Jupiter. Between it's constant, swirling clouds, its many, many moons, and its red spot, there are ...

The gas (and ice) giant Neptune

September 14, 2015

Neptune is the eight planet from our Sun, one of the four gas giants, and one of the four outer planets in our Solar System. Since the "demotion" of Pluto by the IAU to the status of a dwarf planet – and/or Plutoid and ...

Peeking into our galaxy's stellar nursery

October 5, 2015

Astronomers have long turned their telescopes, be they on satellites in space or observatories on Earth, to the wide swaths of interstellar medium to get a look at the formation and birth of stars. However, the images produced ...

Solar storm shakes Earth magnetic field

March 9, 2012

(AP) -- A solar storm shook the Earth's magnetic field early Friday, but scientists said they had no reports of any problems with electrical systems.

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.