Gambling on Gravitational Waves

September 8, 2004

At the Institute of Physics conference Photon 04 today, Professor Jim Hough, one of the UK's leading scientists, revealed that he thinks high street bookmakers are crazy to be offering odds of 100-1 on whether Gravitational Waves (wrinkles in relativity) will be discovered before 2010. He has placed a personal bet of £25 – the maximum Ladbrokes allowed him to stake. The available odds were quickly cut from an initial offering of 500-1.

Professor Jim Hough, from the University of Glasgow and one of the leaders of the UK search for Gravitational Waves, said: "I think the real odds are more like a favourite at 2-1 or 3-1, I'm almost certain we'll discover them in the very near future. I would have had much more money on at the odds they were offering but the maximum bet they allowed me to have was £25!" Gravitational waves are ripples in the fabric of spacetime and are one of the more exotic predictions of Einstein's theory of gravity – General Relativity. Initially thought not to exist, the reality of gravitational waves is no longer doubted by scientists. The gradual changes in the orbit of a binary pulsar called PSR 1913 +16 (a pair of orbiting neutron stars, one of which is a pulsar emitting precisely timed radio pulses) can be explained only if angular momentum and energy is carried away from this system by gravitational waves.

Weak gravitational waves are probably passing through us all the time but are too faint to detect. Scientists are currently trying to detect the strongest waves, for example those created in violent events such as supernovae but none of the instruments looking for them have yet picked up a clear and definite signal. Improvements in the sensitivity of these instruments, and some promising initial results, should mean that scientists are very close.

There are currently four teams working to try and detect them – two in the US, a UK/German team with an interferometer based in Germany, a France/Italy collaboration in Pisa, and a smaller 300 metre instrument in Japan.

The US experiment, based in Hanover and called LIGO, is the largest at 4km. The UK device, called GEO 600, is much smaller at only 600 metres long. "We couldn't afford to build an instrument as big as LIGO so we had to be innovative to compete" said Professor Hough.

"We built a slightly more experimental instrument with two unique features – silica fibre wires and a new way of processing the signal. We use silica fibre wires to suspend the mirrors, rather than steel. Silica creates a purer resonance – like the perfect note you get when you tap a good quality wine glass – and this means it's a lot more sensitive."

"We also put an extra mirror in the output channel which forces the photons back into the system where they are processed for longer. This enhances any signal from a gravitational wave that might be present. GEO's been so successful that LIGO intend to implement some of our improvements in their instrument when they're next refitted."

Looking to the future, he said "Even if gravitational waves are not detected in the next few years, I think we're certain to find them in or around 2010 when LIGO is upgraded. The odds Ladbrokes are offering are bound to keep falling and falling!"

Explore further: Scientists 'squeeze' light one particle at a time

Related Stories

The Planet Saturn

August 3, 2015

The farthest planet from the Sun that be observed with the naked eye, the existence of Saturn has been known for thousands of years. And much like all celestial bodies that can be observed with the aid of instruments – ...

Improved sensors help navigate gravity waves

June 26, 2015

Efforts to detect gravitational waves—which were first predicted by Albert Einstein nearly 100 years ago—are advancing with international researchers including UWA researchers boosting the sensitivity of wave detectors.

Stellar partnership doomed to end in catastrophe

February 9, 2015

Astronomers using ESO facilities in combination with telescopes in the Canary Islands have identified two surprisingly massive stars at the heart of the planetary nebula Henize 2-428. As they orbit each other the two stars ...

Magnetic field around young star captured

October 27, 2014

For the first time astronomers, including SRON astronomer Woojin Kwon, have been able to capture the magnetic field in the accretion disk around a young star. The shape of the field was a big surprise. The discovery suggests ...

Recommended for you

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...

The topolariton, a new half-matter, half-light particle

October 7, 2015

A new type of "quasiparticle" theorized by Caltech's Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as ...

How the stick insect sticks (and unsticks) itself

October 7, 2015

New research shows the fluid found on insects' feet does not help them adhere to vertical and inverted surfaces, as previously thought, but may in fact help them to unstick their feet more easily to allow greater control ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.