Simple method may improve computer memory, catalysts, ceramic/metal seals, and nanodevices

Aug 06, 2004

A method that creates smooth and strong interfaces between metals and metal oxides without high-temperature brazing has been patented by researchers at the National Nuclear Security Administration’s Sandia National Laboratories, Pacific Northwest National Laboratory, and the University of North Texas.

The method can improve magnetic random-access memories, which allow next-generation computers to boot up instantly yet retain their entire memories after power interruptions. Depositing flat, nanometer-thin crystalline and ferromagnetic metallic layers on similarly thin oxide layers increases strength, stability, and uniformity of the oxide-metal interface. This reduces manufacturing cost and requires less electricity to produce more rapid magnetic effects for the computer memory.

The inexpensive technique also may produce better, less expensive (more highly dispersed but stable) catalysts for chemical reactions, better ceramic/metal seals, and lead to improved nanodevices.

The method works by controlling the growth and interfacial strength of a metal deposited on an oxide layer. There are two distinct methods within the patent.

By fully hydroxylating the oxide surface and then cleansing it of impurities, a chemical reaction can oxidize a fraction of deposited metal atoms, incorporating them by strong ionic bonds into the oxide surface. However, these metal atoms also bind strongly to metallic atoms above them and serve as “anchors” to bind more metal. At sufficient concentration, laminar growth is achieved and crystallinity is observed by approximately six metal atomic layers. These findings are supported by both experimental and theoretical results.

Another method controls the wetting characteristics (that is, the layer-by-layer deposition) and increases adhesion between a metal and an oxide layer. By introducing or producing a sub-monolayer of negatively charged species (e.g., a fraction of hydroxyl-radical coverage) to the surface of an oxide layer, layer-by-layer growth of metal deposited onto the oxide surface is promoted. This increases the adhesion strength of the metal-oxide interface. The negatively charged species can either be deposited directly onto the oxide surface or in the form of a compound that dissociates on, or reacts with, the surface to form the negatively charged species. The deposited metal adatoms are thereby bound laterally to the negatively charged species as well as vertically to the oxide surface, binding them strongly to the surface of the oxide, while otherwise they are bound weakly. This method has also been demonstrated by experiment and supported by theory.

Source: DOE/Sandia National Laboratories

Explore further: NIST 'how-to' website documents procedures for nano-EHS research and testing

Related Stories

Modeling how thin films break up

Jun 19, 2015

Excess surface energy from unsatisfied bonds is a significant driver of dimensional changes in thin-film materials, whether formation of holes, contracting edges, or run-away corners. In general, this break-up ...

Stretchable ceramics made by flame technology

Jun 08, 2015

Synthesizing nanoscale materials takes place within high-tech laboratories, where scientists in full-body suits keep every grain of dust away from their sensitive innovations. However, scientists at Kiel ...

Mechanism for aprotic sodium-air batteries

May 29, 2015

The automobile industry has been interested in finding batteries that allow electric cars to travel at a comparable distance to gas-powered cars. Currently, electric cars use a lithium ion battery, but there ...

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.