Boron Nitride Nanotubes More Amenable Than Carbon

May 17, 2004
boron nitride nanotube

Carbon nanotubes get a lot of press attention, but boron nitride (BN) nanotubes might have superior properties. K.H. Khoo and his colleagues form University of California performed first-principles calculations on BN nanotubes in the presence of a transverse electric field and found that these systems exhibit dramatic decrease in band gap when subject to strong fields. This effect should be realizable experimentally for the 5 nm or more diameter BN nanotubes, and it may be very important for tuning the band gap of BN nanotubes for practical applications.

Boron nitride is a binary chemical compound, consisting of equal proportions of boron and nitrogen, with composition BN. Structurally, it is isoelectronic to carbon and takes on similar physical forms: a graphite-like one, and a diamond-like one. The latter is the only material nearly as hard as diamond. Boron nitride is stable at air to approx. 1000°C, under reduced conditions or inert gases it can be used up to 1800°C.

Boron is one to the left on the periodic table from carbon and nitrogen is one to the right. Therefore, it is not surprising that a graphene-liek lattice can be synthesized from alternating boron and nitrogen atoms. However, different from their carbon analogues, boron nitride nanotubes are wide-gap semiconductors with a quasiparticle band gap of about 5.5 eV.

Boron nitride is far more resistant to oxidation than carbon and therefore suited for high temperature applications in which carbon nanostructures would burn. Moreover, BN nanotubes electronic properties are independent of tube diameter and number of layers, unlike tubes made of carbon, making BN nanotubes much more amenable: by doping these tubes, it is conceivable to have devices on single BN tubes which have diameters on the order of nanometers and lengths on the order of microns.

The range of applications (e.g., in optoelectronic devices) of these boron nitride nano-tubes would be greatly extended if their band gap can be tuned to desired values in a controlled way.

Practically, a nanotube on an insulating substrate can be subjected to a strong transverse electric field through an applied gate voltage. Such systems are prototype nanoscale field effect transistors.

Authors performed calculations on boron nitride nanotubes that show that the band gap of boron nitride nanotubes can be greatly reduced by a transverse electric field. For BN nanotubes of diameters of 5 nm or more, a sizable gap reduction should be achievable with laboratory fields. This effect provides a possible way to tune the band gap of BN tubes for various applications.

Read more details of their work in the last issue of Physical Review B (69, 201401(R), 2004).

Explore further: Better together: graphene-nanotube hybrid switches

Related Stories

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

Project uses crowd computing to improve water filtration

July 6, 2015

Nearly 800 million people worldwide don't have access to safe drinking water, and some 2.5 billion people live in precariously unsanitary conditions, according to the Centers for Disease Control and Prevention. Together, ...

Boron-nitride nanotubes show potential in cancer treatment

April 26, 2012

A new study has shown that adding boron-nitride nanotubes to the surface of cancer cells can double the effectiveness of Irreversible Electroporation, a minimally invasive treatment for soft tissue tumors in the liver, lung, ...

Recommended for you

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.