Stem cells crucial to diabetes cure in mice

Mar 16, 2009

More than five years ago, Dr. Lawrence C.B. Chan and colleagues in his Baylor College of Medicine laboratory cured mice with type 1 diabetes by using a gene to induce liver cells to make insulin.

"Now we know how it works," said Chan, director of the federally designed Diabetes and Endocrinology Research Center at BCM and chief of the division of endocrinology in BCM's department of medicine. "The answer is adult stem ."

A gene called neurogenin3 proved critical to inducing cells in the liver to produce insulin on a continuing basis, said Chan and Dr. Vijay Yechoor, assistant professor of medicine-endocrinology and first author of the report that appears in the current issue of the journal Developmental Cell. The research team used a disarmed virus called a vector to deliver the gene to the livers of by a procedure commonly known as .

"The mice responded within a week," said Yechoor. The levels of sugar in their blood plummeted to normal and stayed that way for the rest of their normal lives.

The quick response generated more questions as did the length of time that the animals stayed healthy.

They found that there was a two-step response. At first, the neurogenin3 gene goes into the mature and causes them to make small quantities of insulin - enough to drop sugar levels to normal, said Yechoor.

"This is a transient effect," he said. "Liver cells lose the capacity to make insulin after about six weeks."

However, they found that other cells that made larger quantities of insulin showed up later, clustered around the portal veins (blood vessels that carry blood from the intestines and abdominal organs to the liver).

"They look similar to normal pancreatic (that make insulin normally)," said Yechoor.

They found that these "islet" cells came from a small population of adult usually found near the portal vein. Only a few are needed usually because they serve as a safety net in case of . When that occurs, they quickly activate to form mature liver cells or bile duct cells.

However, neurogenin3 changes their fates, directing them down a path to becoming insulin-producing islet cells located in the liver. The mature liver cell cannot make this change because its fate appears to be fixed before exposure to neurogenin3.

The islet cells in the liver look similar to those made by pancreas after an injury, said Yechoor.

"If we didn't use neurogenin3, none of this would happen," he said. "Neurogenin3 is necessary and sufficient to produce these changes."

Chan cautioned that much more work is needed before similar results could be seen in humans. The gene therapy they undertook in the animals used a disarmed viral vector that could still have substantial toxic effects in humans.

"The concept is important because we can induce normal to acquire a new cell fate. It might even be applicable to regenerating other organs or tissues using a different gene from other types of adult stem cells," he said.

Finding a way to use the treatment in human sounds easier than it is, he said. The environment in which cells grow appears to be an important part of the cell fate determination.

However, he and Yechoor plan to continue their work with the eventual goal of providing a workable treatment for people with diabetes.

More information: www.cell.com/developmental-cell/home

Source: Baylor College of Medicine (news : web)

Explore further: Molecule enhances copper's lethal punch against microbes

add to favorites email to friend print save as pdf

Related Stories

Elusive pancreatic stem cells found in adult mice

Jan 24, 2008

Just as many scientists had given up the search, researchers have discovered that the pancreas does indeed harbor stem cells with the capacity to generate new insulin-producing beta cells. If the finding made in adult mice ...

The new source of islet cells

Oct 25, 2007

The shortage of islet cells limits the development of islet transplantation. One new approach was reported in the October 21 issue of the World Journal of Gastroenterology because of its great significance in enhancing the ou ...

Italians report stem-cell advances

Sep 06, 2006

Italian scientists have reportedly made important advances in stem-cell research, specifically for kidney and liver disease.

Recommended for you

Breakthrough in understanding of important blood protein

15 hours ago

The human body contains a unique protein that has the unusual property of destroying itself after a few hours of existence - it must therefore be continually recreated and is no stable protein. The protein, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

joefarah
not rated yet Mar 17, 2009
Interesting that the solution was adult stem cells. It's no wonder this is not visible in the media. Could you imagine the press coverage if the solution used embryonic stem cells? Exponential.