Key milestone towards the development of a new clinically useful antibiotic

Jul 12, 2010

Scientists have identified the genes necessary for making a highly potent and clinically unexploited antibiotic in the fight against multi-resistant pathogens.

"Lantibiotics are antibiotic molecules produced by soil bacteria, and we are studying probably the most potent one known, microbisporicin, which is active against many different pathogens," said Professor Mervyn Bibb from the John Innes Centre, co-author on the paper to be published in PNAS.

"Our study has allowed us to understand how the antibiotic is made by a that was first isolated from Indonesian soil. Now we can engineer the bacterium to make similar but better molecules, and lots of them."

"For example, we can take rational approaches to improve its pharmacological properties, such as its stability in the blood stream and how it distributes into tissues."

The producing bacterium, Microbispora corallina, is difficult to work with. It grows very slowly and no tools existed for its . PhD student Lucy Foulston developed the tools herself. She then took advantage of new developments in genome sequencing to identify and then isolate the M. corallina gene cluster responsible for microbisporicin production.

This allowed her to analyse how the bacterium makes the molecule and the functions of the genes involved. Notably, she was able to identify the genes responsible for giving microbisporicin some of its unique features.

The antibiotic molecule binds to a well established target in the it kills, and as yet there are no signs of resistance towards it.

Microbisporicin is very effective at killing disease-causing bacteria, including Clostridium difficile, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant pathogens.

"This molecule is already in late preclinical-phase trials and in animal models has shown to be more effective than the current drugs of last resort, linezolid and ," said Professor Bibb.

"We believe that this study will make a major contribution to the future clinical development of this exciting antibiotic, and the derivatives that can be made using the knowledge and technology that we have developed."

Explore further: New insight that 'mega' cells control the growth of blood-producing cells

Provided by Norwich BioScience Institutes

5 /5 (3 votes)
add to favorites email to friend print save as pdf

Related Stories

Nanotechnology used to probe effectiveness of antibiotics

Feb 04, 2009

A group of researchers led by scientists from the London Centre for Nanotechnology, in collaboration with a University of Queensland researcher, have discovered a way of using tiny nano-probes to help understand how an antibiotic ...

New antibiotic beats superbugs at their own game

Jul 03, 2008

The problem with antibiotics is that, eventually, bacteria outsmart them and become resistant. But by targeting the gene that confers such resistance, a new drug may be able to finally outwit them. Rockefeller ...

Study unveils lifeline for 'antibiotic of last resort'

Apr 11, 2010

A new study led by the scientific director of the Michael G. DeGroote Institute for Infectious Disease Research has uncovered for the first time how bacteria recognize and develop resistance to a powerful antibiotic used ...

New weapon against highly resistant microbes within grasp

May 27, 2010

An active compound from fungi and lower animals may well be suitable as an effective weapon against dangerous bacteria. We're talking about plectasin, a small protein molecule that can even destroy highly resistant bacteria. ...

Stealth technology maintains fitness after sex

Jan 12, 2007

Pathogens can become superbugs without their even knowing it, research published today in Science shows. 'Stealth' plasmids - circular 'DNA parasites' of bacteria that can carry antibiotic-resistance genes - produce a prot ...

Recommended for you

Head injury causes the immune system to attack the brain

12 hours ago

Scientists have uncovered a surprising way to reduce the brain damage caused by head injuries - stopping the body's immune system from killing brain cells. The study, published in the open access journal Acta Neuropathologica Co ...

User comments : 0