'Non-trivial' Crystallization Reveals Antibiotic's Molecular Mode of Action (w/ Video)

August 3, 2009 by Monte Basgall,

(PhysOrg.com) -- With the "last resort" antibiotic Vancomycin now plagued by the first signs of bacterial resistance, a scientific collaboration centered at Duke University has identified how a candidate successor antibiotic known as Ramoplanin A2 can kill pathogenic bacteria by interrupting how they form their cell membranes.

During a 12-year quest, the research team had to learn how to crystallize Ramoplanin's molecular structure at the crucial time and place that it interacts with the bacterium's membrane. They had difficulty doing this with real bacterial membranes, so they had to devise a stand-in from a detergent molecule possessing membrane-like characteristics.

"I am excited that we were able to solve the structure, which was not trivial," said Dewey McCafferty, a Duke professor of chemistry and biochemistry. "Now we have this really important picture of how Ramoplanin works as an antibiotic. Ramoplanin is important because it has the ability to kill certain bacteria resistant to front line antibiotics such as and Methicillin."

Movie displays U-shaped structures that help disrupt cell wall formation.

"Knowing more about its molecular underpinnings is going to allow us to make changes to the antibiotic structure in order to improve its pharmacological properties."

A report on the work, with McCafferty's post-doctoral research associate James Hamburger as first author, will be published online this week in the . The research was funded by the National Institutes of Health.

According to McCafferty, whose Duke group studies the chemistry of bacterial infections and resistance, Ramoplanin A2 is an experimental commercial version of an antibiotic first isolated from a in the 1980s and experimentally shown to work against problem pathogens such as Staphylococcus aureus, Enterococcus faecium, Staphylococcus epidermis and difficile.

It arrives at a time when Vancomycin, the antibiotic physicians rely on when others prove ineffective, is beginning to confront genetically resistant bacterial strains after three decades on the market.

Despite its promise, various Ramoplanin preparations have not been well-tolerated in human trials due to poor absorption and limited toxicity. However, an oral preparation intended to treat Clostridium difficile, which causes serious and hard-to-combat intestinal infections, has recently been under clinical investigation.

Progress has also been hampered by uncertainty about how Ramoplanin works on bacteria, a question McCafferty has been pursuing since 1997.

Researchers knew that Ramoplanin interrupts the assembly of the bacterial , but did not know the molecular details.

After overcoming the difficulties of depicting Ramoplanin's interaction with the cell membrane, the researchers discovered that the molecule forms U-shaped structures that can bind to and capture a specific intermediate in membrane formation called Lipid II. Thus bound, the Lipid IIs can no longer participate in membrane formation. And because of this, bacteria with improperly formed cell walls die.

Vancomycin also interrupts cell wall synthesis by capturing Lipid II, but in a different way and position in the molecular architecture, McCafferty said. The first antibiotic, penicillin, targets related enzymes called transpeptidases that stitch Lipid II molecules together into the mature cell wall.

Bacteria routinely develop immunities to antibiotics by mutating into new versions that work around such structural Achilles' heels.

For now at least, "Ramoplanin is not susceptible to the same mechanisms of resistance as Vancomycin, because it acts by a different molecular mechanism," McCafferty said.

"A replacement for Vancomycin is urgently needed," he added. "Ramoplanin may offer additional help in the fight against drug-resistant bacterial infections."

McCafferty's Duke group is also studying the biosynthesis of Ramoplanin using genetic techniques in the hopes that these methods will be used to prepare alternative versions of Ramoplanin produced by fermentation. "The total chemical synthesis of Ramoplanin consists of almost 100 chemical steps," he said. "It is very, very difficult, and as such we hope to harness the potential of microbial engineering to produce Ramoplanin-like molecules with improved properties."

The Duke researchers are also involved in efforts to understand the molecular mechanism of Ramoplanin resistance in the pathogen .

Source: Duke University (news : web)

Explore further: Scientists re-engineer antibiotic

Related Stories

Scientists re-engineer antibiotic

February 9, 2006

Scientists have re-engineered an antibiotic that attacks bacteria by inhibiting cell wall synthesis, thereby significantly increasing its effectiveness.

Nanotechnology used to probe effectiveness of antibiotics

February 4, 2009

A group of researchers led by scientists from the London Centre for Nanotechnology, in collaboration with a University of Queensland researcher, have discovered a way of using tiny nano-probes to help understand how an antibiotic ...

New antibiotic beats superbugs at their own game

July 3, 2008

The problem with antibiotics is that, eventually, bacteria outsmart them and become resistant. But by targeting the gene that confers such resistance, a new drug may be able to finally outwit them. Rockefeller University ...

Researchers analyze how new anti-MRSA abtibiotics function

July 28, 2008

A new paper by Shahriar Mobashery, Navari Family Professor in Life Sciences at the University of Notre Dame, and researchers in his lab provides important insights into promising new antibiotics aimed at combating MRSA.

Nanotechnology boosts war on superbugs

October 12, 2008

This week Nature Nanotechnology journal (October 12th) reveals how scientists from the London Centre for Nanotechnology (LCN) at UCL are using a novel nanomechanical approach to investigate the workings of vancomycin, one ...

Recommended for you

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

The early bits of life

January 18, 2018

How can life originate before DNA and genes? One possibility is that there are natural processes that lead to the organisation of simple physical objects such as small microcapsules that undergo rudimentary forms of interaction, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.