Left-right wiring determined by neural communication in the embryonic worm

May 17, 2007
Left-right wiring determined by neural communication in the embryonic worm
The AWC neuron on the worm's left side (red) and the AWC neuron on its right (yellow) reflect a ”handedness” that develops randomly in the C. elegans brain. This pattern is created by an unexpected network of gap junction channels in the worm embryo. Credit: Rockefeller University

Most animals appear symmetrical at first glance, but we're full of internal lop-sidedness. From the hand used to pick up a pencil or throw a baseball, to where language is generated in the brain, to the orientation of our internal organs, humans are a glut of asymmetries. Worms aren't so different: The roundworm Caenorhabditis elegans has nerves on its left and right sides that perform different functions. Like handedness, the determination of which nerves develop on which side seems random from worm to worm.

But now, Rockefeller University and Howard Hughes Medical Institute scientists working to demystify the worm's asymmetry have discovered that the arbitrary left-right configurations of two types of olfactory neurons are established during development. In a study released in the May 18 issue of Cell, the researchers show that embryonic worms have a system of gap junctions -- "broadband" communication channels through which cells pass many kinds of molecules and electrical signals -- that allow growing neurons on the left and right to communicate with each other, a system that dissolves as the worm develops.

Every neuron in the adult C. elegans has been mapped and named. Handedness researchers are particularly interested in two olfactory neurons, AWCON and AWCOFF, one each on the left and right side of the worm's body. AWCON has one set of responsibilities, while AWCOFF has a totally different set of functions. Which side houses each of the nerves -- right or left -- appears to be random, with their positions reversed about 50 percent of the time. "What makes this an interesting puzzle to solve is understanding how the left and the right side become different from each other, and how they coordinate their activity so that every worm still has exactly one of each type of cell," says the paper's senior author Cori Bargmann, Torsten N. Wiesel Professor and head of the Laboratory of Neural Circuits and Behavior at Rockefeller. "What is it that sets up this kind of handedness in the brain?"

Prior studies had shown that a gene involved in human migraine headaches (an asymmetrical affliction) was involved in this decision, but something was happening earlier that researchers had yet to figure out. Bargmann, who also is an investigator at the Howard Hughes Medical Institute, and postdoctoral associate Chiou-Fen Chuang -- now an assistant professor at Cincinnati Children's Research Foundation -- found that the first step of left-right communication is carried out by a gene that makes gap junctions. And yet strangely, as far as worm researchers knew, no gap junctions existed anywhere on adult worm AWC neurons.

Then Bargmann and Chuang had a flash of insight: Since, like handedness, AWC asymmetry arises before the animal is fully developed, maybe they needed to examine the nervous system of the embryonic worm. Using an electron microscope, they discovered that the developing worm's neural network, which had not previously been mapped, was completely different from that of the mature animal. "A large number of embryonic neurons are heavily interconnected by gap junctions," says Bargmann, who is also an HHMI Investigator. "They all grow to the midline, communicate with each other, and create a conduit of information that links together these two different sides of the brain." Then, after the gap junctions do their job, they disappear. "This network is transient; we only know about it because we were able to look at this early period."

A similar system of extensive gap junctions appears in the developing mammalian brain, but researchers have yet to figure out exactly what it does. In worms, at least, they now know that it's involved in differentiating the left and right sides. Now, Bargmann says, she's interested in finding out how this brief embryonic communication translates into a permanent change that lasts for the rest of the animal's life.

Source: Rockefeller University

Explore further: Brazil finds coffee protein with morphine effect

add to favorites email to friend print save as pdf

Related Stories

Obama recommends extended wilderness zone in Alaska

7 hours ago

US President Barack Obama said Sunday he would recommend a large swath of Alaska be designated as wilderness, the highest level of federal protection, in a move likely to anger oil proponents.

NASA craft set to beam home close-ups of Pluto

7 hours ago

Nine years after leaving Earth, the New Horizons spacecraft is at last drawing close to Pluto and on Sunday was expected to start shooting photographs of the dwarf planet.

Navy wants to increase use of sonar-emitting buoys

9 hours ago

The U.S. Navy is seeking permits to expand sonar and other training exercises off the Pacific Coast, a proposal raising concerns from animal advocates who say that more sonar-emitting buoys would harm whales and other creatures ...

Uganda seizes massive ivory and pangolin haul

9 hours ago

Ugandan wildlife officers have seized a huge haul of elephant ivory and pangolin scales, representing the deaths of hundreds of endangered animals, police said Sunday.

Recommended for you

Cochlear implant users can hear, feel the beat in music

6 hours ago

People who use cochlear implants for profound hearing loss do respond to certain aspects of music, contrary to common beliefs and limited scientific research, says a research team headed by an investigator at Georgetown University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.