Researchers find a peptide that encourages HIV infection

May 10, 2007

UCLA AIDS Institute researchers have discovered that when a crucial portion of a peptide structure in monkeys that defends against viruses, bacteria and other foreign invaders is reversed, the peptide actually encourages infection with HIV.

The findings, published in the April issue of AIDS Research and Human Retroviruses, could pave the way for the use of such peptides in gene therapy using HIV-based vectors as the delivery method.

"Although it may seem counterintuitive to value or even study a peptide that increases the ability of HIV-1 to enter a broad range of human cells, retroviral vectors are currently being explored as vehicles for gene therapy," the authors wrote. "In this area, at least, agents that enhance retroviral uptake could contribute to an emerging field of medicine."

"So many people have tried to deliver genes into different kinds of cells," said study co-author Shen Pang, adjunct associate professor at the UCLA School of Dentistry and a member of the UCLA AIDS Institute. "If you know of some method that can enhance gene delivery, you would have a useful tool."

Retrocyclin-1 (RC-100) is a circular peptide that has been shown in previous studies to inhibit the infection of CD4 cells with HIV. RC-111 is also cyclic and has the same amino acid sequence as retrocyclin-1. In both peptides, the amino acids are strung like 18 beads along the molecule's backbone. The amino acids in RC-111, however, are in reverse order.

The researchers had initially wanted to quantify previous research by Dr. Robert I. Lehrer, distinguished professor of medicine in the division of infectious diseases at the David Geffen School of Medicine at UCLA and a co-author of the present study. Unexpectedly, the researchers discovered that while retrocyclin-1 inhibited infection of CD4 cells with HIV-1 by about 95 percent, the RC-111 variant enhanced viral infection five-fold.

There are three structural varieties of peptides, also known as defensins — alpha, beta and theta, Lehrer said. Humans have only alpha and beta; monkeys have all three.

"Here's a peptide whose normal structure allows it to protect against viruses, yet if you make the same peptide and place its amino acids in a reverse order, that lets the virus in," Lehrer said. "We would like to learn why it happens, but at the moment there's no explanation for this paradoxical result."

Still, the findings seem to show promise in gene therapy.

Source: University of California - Los Angeles

Explore further: Latent HIV may lurk in 'quiet' immune cells, research suggests

add to favorites email to friend print save as pdf

Related Stories

Toward mitochondrial plant cell factories

Jan 15, 2015

In work published in Scientific Reports, a group of researchers led by Jo-Ann Chuah and Keiji Numata of the RIKEN Center for Sustainable Resource Science have devised a new strategy for selectively delive ...

New mechanism for growth control discovered

Nov 14, 2014

Research on Drosophila reveals that once activated during starvation, this regulatory system prevents the secretion of insulin like peptides, the counterparts of IGF and insulin in mammals.

Recommended for you

HIV testing yields diagnoses in Kenya but few seek care

Jan 29, 2015

Between December 2009 and February 2011, health workers with the AMPATH Consortium sought to test and counsel every adult resident in the Bunyala subcounty of Kenya for HIV. A study in the journal Lancet HIV reports that the campaign yielded more than 1,300 new positive diagnoses, but few of those new ...

The adaptability of pathogens

Jan 28, 2015

Drug-resistant HIV viruses can spread rapidly. This is the conclusion of a study conducted as part of the SWISS HIV Cohort Study, which is supported by the SNSF. Only the continuous introduction of new drugs can stop the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.