Food cue-related brain activity linked to obesity?

Apr 26, 2007

A unique pattern of gene expression observed in rats may be linked to a conditioned desire for food and excessive food intake, an article published today in BMC Biology suggests.

It’s well known that food-associated cues, such as advertising, can influence food intake. But the underlying neurobiology is far from clear.

Craig A. Schiltz and colleagues from the University of Wisconsin Madison School of Medicine and Public Health, USA, created an experimental set up that allowed them to study patterns of gene expression linked to this motivational state - rats conditioned to expect a chocolate-flavoured treat in a particular environment, were subsequently denied their reward.

The research, conducted in the laboratory of Ann E. Kelly showed that expression of a handful of immediate early genes was increased in cortical, striatal, thalamic and hypothalamic brain regions. Food-related cues triggered dramatic changes in the functional connectivity of circuits involved in adaptive behaviour. For example, increased connectivity was seen between the cortex and two other regions - the amygdala and the striatum. Within the latter, there was a shift in activity from the outer shell to the inner core of the nucleus accumbens and an increased expression of the opioid-encoding proenkephalin gene.

Taken together, these results suggest that food-associated cues have a powerful influence on neuronal activity and gene expression in brain areas mediating complicated functions such as cognition and emotion, and more basic abilities such as arousal and energy balance. The pattern of activation differs from that elicited by neutral cues, and may well contribute to a conditioned motivational state that can lead to excessive food intake.

Source: Biomed Central

Explore further: Artificial sweeteners linked to abnormal glucose metabolism

add to favorites email to friend print save as pdf

Related Stories

Fishing-bait bloodworms have bee-sting bites

Sep 08, 2014

The bite of a bloodworm delivers venom that causes severe allergic reactions. Scientists studying the venom for the first time have discovered why it causes a reaction similar to that of a bee sting.

Researchers reveal how ocean bacteria use light to grow

Aug 19, 2014

Sunlight stimulates common ocean bacteria to use carbon dioxide for growth when high-quality organic carbon food sources are scarce, according to surprising research by an international team that includes ...

Recommended for you

Connection found between birth size and brain disorders

11 hours ago

(Medical Xpress)—A trio of researchers has found what appears to be a clear connection between birth size and weight, and the two brain disorders, autism and schizophrenia. In their paper published in Proceedings of ...

A novel therapy for sepsis?

Sep 16, 2014

A University of Tokyo research group has discovered that pentatraxin 3 (PTX3), a protein that helps the innate immune system target invaders such as bacteria and viruses, can reduce mortality of mice suffering ...

User comments : 0