Hepatitis C virus blocks 'superinfection'

Apr 05, 2007

There’s infection and then there’s superinfection – when a cell already infected by a virus gets a second viral infection. But some viruses don’t like to share their cells. New research from Rockefeller University shows that the hepatitis C virus, which infects cells in the liver and can cause chronic liver disease, can block other hepatitis C variants from infecting the same cell.

Research from Charles Rice’s laboratory at Rockefeller last year created the first hepatitis C virus that could be grown in cell culture. Using this virus, called HCVcc, the scientists, lead by graduate student Donna Tscherne, tried to infect cells previously infected with hepatitis C virus. But it didn’t work; the cells couldn’t be infected. The same was true when they tried to infect cells that contained hepatitis C virus of other genotypes than that of HCVcc. Only when they gave the cells a drug that could inhibit virus replication could they superinfect them with HCVcc. The first virus was stopping HCVcc from infecting the cells, a phenomenon called superinfection exclusion.

“A virus can interfere with a secondary infection in a variety of ways,” says Rice, head of the Laboratory of Virology and Infectious Disease and the Maurice R. and Corinne P. Greenberg Professor. “It can interfere with how a virus attaches to the cell, its penetration, or its access to the cell’s resources.” If both viruses are competing for the same resources in the cell, then the first virus can confiscate them so none are available for the second virus.

Rice and Tscherne believe this phenomenon may explain the mechanism of HCV superinfection exclusion. The scientists found that HCVcc is blocked at some point after it has entered the cell; most likely at a step, or steps, involved in replication. Future studies are being designed to try to identify what proteins are important for this step.

“Understanding superinfection exclusion has potentially important implications for understanding the biology of hepatitis C,” says Rice. The mechanism could, for instance, help the hepatitis C virus generate a large pool of variants that would be able to withstand attack from the immune system or from antiviral drugs. If the process of superinfection exclusion could be recreated therapeutically, it could also open up new treatment avenues.

Citation: Journal of Virology 81(8): 3693-3703 (April 2007)

Source: Rockefeller University

Explore further: US scientists make embryonic stem cells from adult skin

add to favorites email to friend print save as pdf

Related Stories

Hepatitis C virus damages brain cells

Oct 08, 2010

A University of Alberta researcher specializing in neurological infections has discovered that the hepatitis C virus injures and inflames brain cells, resulting in neurological issues for some patients living with the disease. ...

Hepatitis C-like viruses identified in bats and rodents

Apr 22, 2013

As many as one in 50 people around the world is infected with some type of hepacivirus or pegivirus, including up to 200 million with hepatitis C virus (HCV), a leading cause of liver failure and liver cancer. There has been ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

Apr 18, 2014

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 0

More news stories

UAE reports 12 new cases of MERS

Health authorities in the United Arab Emirates have announced 12 new cases of infection by the MERS coronavirus, but insisted the patients would be cured within two weeks.

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...