Hepatitis C virus blocks 'superinfection'

Apr 05, 2007

There’s infection and then there’s superinfection – when a cell already infected by a virus gets a second viral infection. But some viruses don’t like to share their cells. New research from Rockefeller University shows that the hepatitis C virus, which infects cells in the liver and can cause chronic liver disease, can block other hepatitis C variants from infecting the same cell.

Research from Charles Rice’s laboratory at Rockefeller last year created the first hepatitis C virus that could be grown in cell culture. Using this virus, called HCVcc, the scientists, lead by graduate student Donna Tscherne, tried to infect cells previously infected with hepatitis C virus. But it didn’t work; the cells couldn’t be infected. The same was true when they tried to infect cells that contained hepatitis C virus of other genotypes than that of HCVcc. Only when they gave the cells a drug that could inhibit virus replication could they superinfect them with HCVcc. The first virus was stopping HCVcc from infecting the cells, a phenomenon called superinfection exclusion.

“A virus can interfere with a secondary infection in a variety of ways,” says Rice, head of the Laboratory of Virology and Infectious Disease and the Maurice R. and Corinne P. Greenberg Professor. “It can interfere with how a virus attaches to the cell, its penetration, or its access to the cell’s resources.” If both viruses are competing for the same resources in the cell, then the first virus can confiscate them so none are available for the second virus.

Rice and Tscherne believe this phenomenon may explain the mechanism of HCV superinfection exclusion. The scientists found that HCVcc is blocked at some point after it has entered the cell; most likely at a step, or steps, involved in replication. Future studies are being designed to try to identify what proteins are important for this step.

“Understanding superinfection exclusion has potentially important implications for understanding the biology of hepatitis C,” says Rice. The mechanism could, for instance, help the hepatitis C virus generate a large pool of variants that would be able to withstand attack from the immune system or from antiviral drugs. If the process of superinfection exclusion could be recreated therapeutically, it could also open up new treatment avenues.

Citation: Journal of Virology 81(8): 3693-3703 (April 2007)

Source: Rockefeller University

Explore further: Diet affects men's and women's gut microbes differently

add to favorites email to friend print save as pdf

Related Stories

Study shows role of media in sharing life events

13 minutes ago

To share is human. And the means to share personal news—good and bad—have exploded over the last decade, particularly social media and texting. But until now, all research about what is known as "social sharing," or the ...

The microbes make the sake brewery

17 minutes ago

A sake brewery has its own microbial terroir, meaning the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor according to research published ahead of print ...

New approach to form non-equilibrium structures

26 minutes ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Fighting bacteria—with viruses

1 hour ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Recommended for you

Diet affects men's and women's gut microbes differently

22 hours ago

The microbes living in the guts of males and females react differently to diet, even when the diets are identical, according to a study by scientists from The University of Texas at Austin and six other institutions published ...

User comments : 0