Hepatitis C virus blocks 'superinfection'

Apr 05, 2007

There’s infection and then there’s superinfection – when a cell already infected by a virus gets a second viral infection. But some viruses don’t like to share their cells. New research from Rockefeller University shows that the hepatitis C virus, which infects cells in the liver and can cause chronic liver disease, can block other hepatitis C variants from infecting the same cell.

Research from Charles Rice’s laboratory at Rockefeller last year created the first hepatitis C virus that could be grown in cell culture. Using this virus, called HCVcc, the scientists, lead by graduate student Donna Tscherne, tried to infect cells previously infected with hepatitis C virus. But it didn’t work; the cells couldn’t be infected. The same was true when they tried to infect cells that contained hepatitis C virus of other genotypes than that of HCVcc. Only when they gave the cells a drug that could inhibit virus replication could they superinfect them with HCVcc. The first virus was stopping HCVcc from infecting the cells, a phenomenon called superinfection exclusion.

“A virus can interfere with a secondary infection in a variety of ways,” says Rice, head of the Laboratory of Virology and Infectious Disease and the Maurice R. and Corinne P. Greenberg Professor. “It can interfere with how a virus attaches to the cell, its penetration, or its access to the cell’s resources.” If both viruses are competing for the same resources in the cell, then the first virus can confiscate them so none are available for the second virus.

Rice and Tscherne believe this phenomenon may explain the mechanism of HCV superinfection exclusion. The scientists found that HCVcc is blocked at some point after it has entered the cell; most likely at a step, or steps, involved in replication. Future studies are being designed to try to identify what proteins are important for this step.

“Understanding superinfection exclusion has potentially important implications for understanding the biology of hepatitis C,” says Rice. The mechanism could, for instance, help the hepatitis C virus generate a large pool of variants that would be able to withstand attack from the immune system or from antiviral drugs. If the process of superinfection exclusion could be recreated therapeutically, it could also open up new treatment avenues.

Citation: Journal of Virology 81(8): 3693-3703 (April 2007)

Source: Rockefeller University

Explore further: Identified the mechanism that controls localization of protein Rac1 in the cell nucleus

add to favorites email to friend print save as pdf

Related Stories

Mashable gets $17 mn funding led by Time Warner

16 minutes ago

Mashable, a news website focused on technology and entertainment, said Thursday it raised $17 million in capital led by Time Warner Investments, to help fuel expansion plans.

Who's going to win? The answer could change by the hour

55 minutes ago

The outcome of that big sporting event you just can't wait to watch may depend on how the timing of the match aligns (or doesn't) with the internal biological clocks of the athletes on the teams, according ...

Recommended for you

Among gut microbes, strains, not just species, matter

1 hour ago

A large community of microorganisms calls the human digestive tract home. This dynamic conglomerate of microscopic life forms - the gut microbiome - is vital to how people metabolize various nutrients in ...

Scientists develop compound to fight MRSA

1 hour ago

Microbiologists and chemists at the University of South Florida have developed and patented a synthetic compound that has shown antibiotic action against methicillin resistant Staphylococcus aureus, also k ...

Hydrogen sulfide could help lower blood pressure

2 hours ago

A gas that gives rotten eggs their distinctive odour could one day form the basis of new cardiovascular therapies. Research has indicated that a new compound, called AP39, which generates minute quantities ...

Researchers design tailored tissue adhesives

7 hours ago

After undergoing surgery to remove diseased sections of the colon, up to 30 percent of patients experience leakage from their sutures, which can cause life-threatening complications.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.