Supercomputer simulations may pinpoint causes of Parkinson's, Alzheimer's diseases

Mar 22, 2007

Using the massive computer-simulation power of the San Diego Supercomputer Center (SDSC) at UC San Diego, researchers are zeroing in on the causes of Parkinson’s disease, Alzheimer’s disease, rheumatoid arthritis and other diseases.

A study published in this week’s Federation of European Biochemical Societies (FEBS) Journal offers – for the first time – a model for the complex process of aggregation of a protein known as alpha-synuclein, which in turn leads to harmful ring-like or pore-like structures in human membranes, the kind of damage found in Parkinson’s and Alzheimer’s patients.

The researchers at SDSC and UC San Diego also found that the destructive properties of alpha-synuclein can be blocked by beta-synuclein – a finding that could lead to treatments for many debilitating diseases.

The current journal’s cover features an image from the research that helps illustrate the scientists’ work.

“This is one of the first studies to use supercomputers to model how alpha-synuclein complexes damage the cells, and how that could be blocked,” said Eliezer Masliah, professor of neurosciences and pathology at UC San Diego. “We believe that these ring- or pore-like structures might be deleterious to the cells, and we have a unique opportunity to better understand how alpha-synuclein is involved in the pathogenesis of Parkinson’s disease, and how to reverse this process.”

Igor Tsigelny, project scientist in chemistry and biochemistry at UC San Diego and a researcher at SDSC, said that the team’s research helped confirm what researchers had suspected. “The present study – using molecular modeling and molecular dynamics simulations in combination with biochemical and ultrastructural analysis – shows that alpha-synuclein can lead to the formation of pore-like structures on membranes.”

In contrast, he said, “beta-synuclein appears to block the propagation of alpha-synucleins into harmful structures.”

The complex calculations for the study were performed on Blue Gene supercomputers at SDSC and the Argonne National Labs.

Tsigelny worked in collaboration with Pazit Bar-On, Department of Neurosciences; Yuriy Sharikov of SDSC; Leslie Crews of the Department of Pathology; Makoto Hashimoto of Neurosciences; Mark A. Miller of SDSC; Steve H. Keller in Medicine; Oleksandr Platoshyn and Jason X.J. Yuan, both in Medicine; and Masliah, all at UC San Diego.

Source: University of California - San Diego

Explore further: Study reveals one reason brain tumors are more common in men

add to favorites email to friend print save as pdf

Related Stories

Shrinking dinosaurs evolved into flying birds (w/ Video)

15 minutes ago

A new study involving scientists from the University of Southampton has revealed how massive, meat-eating, ground-dwelling dinosaurs evolved into agile flying birds: they just kept shrinking and shrinking, ...

Android grabs 85% of smartphone market: survey

15 minutes ago

Smartphones powered by the Android operating system captured 85 percent of the worldwide market in the second quarter, threatening to marginalize rival platforms, a new survey shows.

Recommended for you

Clues to curbing obesity found in neuronal 'sweet spot'

5 hours ago

Preventing weight gain, obesity, and ultimately diabetes could be as simple as keeping a nuclear receptor from being activated in a small part of the brain, according to a new study by Yale School of Medicine ...

Small RNAs in blood may reveal heart injury

15 hours ago

(Medical Xpress)—Like clues to a crime, specific molecules in the body can hint at exposure to toxins, infectious agents or even trauma, and so help doctors determine whether and how to treat a patient. ...

User comments : 0