Supercomputer Simulations may Pinpoint Causes of Parkinson’s, Alzheimer’s Diseases

Mar 19, 2007 By Paul K. Mueller
Supercomputer Simulations may Pinpoint Causes of Parkinson’s, Alzheimer’s Diseases
The work of researchers at UC San Diego and the San Diego Supercomputer Center is featured on the cover of the current issue of the Federation of European Biochemical Societies Journal

Using the massive computer-simulation power of the San Diego Supercomputer Center (SDSC) at UC San Diego, researchers are zeroing in on the causes of Parkinson’s disease, Alzheimer’s disease, rheumatoid arthritis and other diseases.

A study published in this week’s Federation of European Biochemical Societies (FEBS) Journal offers – for the first time – a model for the complex process of aggregation of a protein known as alpha-synuclein, which in turn leads to harmful ring-like or pore-like structures in human membranes, the kind of damage found in Parkinson’s and Alzheimer’s patients.

The researchers at SDSC and UC San Diego also found that the destructive properties of alpha-synuclein can be blocked by beta-synuclein – a finding that could lead to treatments for many debilitating diseases.

The current journal’s cover features an image from the research that helps illustrate the scientists’ work.

“This is one of the first studies to use supercomputers to model how alpha-synuclein complexes damage the cells, and how that could be blocked,” said Eliezer Masliah, professor of neurosciences and pathology at UC San Diego. “We believe that these ring- or pore-like structures might be deleterious to the cells, and we have a unique opportunity to better understand how alpha-synuclein is involved in the pathogenesis of Parkinson’s disease, and how to reverse this process.”

Igor Tsigelny, project scientist in chemistry and biochemistry at UC San Diego and a researcher at SDSC, said that the team’s research helped confirm what researchers had suspected. “The present study – using molecular modeling and molecular dynamics simulations in combination with biochemical and ultrastructural analysis – shows that alpha-synuclein can lead to the formation of pore-like structures on membranes.”

In contrast, he said, “beta-synuclein appears to block the propagation of alpha-synucleins into harmful structures.”

The complex calculations for the study were performed on Blue Gene supercomputers at SDSC and the Argonne National Labs.

Tsigelny worked in collaboration with Pazit Bar-On, Department of Neurosciences; Yuriy Sharikov of SDSC; Leslie Crews of the Department of Pathology; Makoto Hashimoto of Neurosciences; Mark A. Miller of SDSC; Steve H. Keller in Medicine; Oleksandr Platoshyn and Jason X.J. Yuan, both in Medicine; and Masliah, all at UC San Diego.

Source: UC San Diego

Explore further: Recombinant peptide for transplantation of pancreatic islets in mice models of diabetes

add to favorites email to friend print save as pdf

Related Stories

Image: The colors of sunset over the ISS

4 minutes ago

ESA astronaut Samantha Cristoforetti took these images from the International Space Station during her six-month mission. The Progress cargo ship and Soyuz crew spacecraft reflect sunlight as our star sets ...

Management of peatlands has large climate impacts

14 minutes ago

Drainage and management of pristine peatlands increase greenhouse gas emissions into the atmosphere. A recent study, based on a new, wide data set collected from northern peatlands indicates that particularly ...

Behind the dogmas of good old hydrodynamics

27 minutes ago

A new theory, which gives insights into the transport of liquid flowing along the surface under an applied electric field, was developed by a group of Russian scientists lead by Olga Vinogradova who is a ...

Recommended for you

Novel nanoparticle therapy promotes wound healing

Mar 26, 2015

An experimental therapy developed by researchers at Albert Einstein College of Medicine of Yeshiva University cut in half the time it takes to heal wounds compared to no treatment at all. Details of the therapy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.