Jet engines help solve the mysteries of the voice

Mar 13, 2007

Although scientists know about basic voice production—the two "vocal folds" in the larynx vibrate and pulsate airflow from the lungs—the larynx is one of the body's least understood organs.

Sound produced by vocal-fold vibration has been extensively researched, but the specifics of how airflow actually affects sound have not been shown using an animal model—until now.

Vortices, or areas of rotational motion that look like smoke rings, produce sound in jet engines. New research from the University of Cincinnati uses methods developed from the study of jet noise to identify similar vortices in an animal model.

Sid Khosla, MD, lead author of the study, says vortices may help explain why individual voices are different and can have a different richness and quality to their sound.

"If vortices didn't affect sound production, the voice would sound mechanical," says Khosla, assistant professor of otolaryngology. "The vortices can produce sound by a number of mechanisms. This complexity produces a sound that makes my voice different from yours."

Khosla and his team report their findings in the March edition of the Annals of Otology, Rhinology and Laryngology.

"Understanding how airflow patterns affect sound in a jet engine (aeroacoustics) helps us determine how we can reduce jet noise," says coauthor Ephraim Gutmark, PhD, a UC professor of aerospace engineering. "We can apply the same physical understanding of aeroacoustics to study normal and abnormal voice."

According to Khosla, computational and theoretical models have been developed to demonstrate how vortices affect sound production, but the UC team is the first to demonstrate it using an animal model, which makes their findings more applicable to the human larynx.

"Currently, when surgery is required to treat voice disorders, it's primarily done on the vocal cords," says Khosla. "Actually knowing there are additional sources that affect sound may open up a whole new way for us to treat voice disorders."

In addition to better surgery techniques, Khosla says, having a better understanding of how vortices affect voice production could help in the development of improved pharmacological approaches and clinical pathology services, as well as improved training of the voice.

Source: University of Cincinnati

Explore further: New compounds could offer therapy for multitude of diseases

Related Stories

Flocks of starlings ride the wave to escape

3 hours ago

Why does it seem as if a dark band ripples through a flock of European starlings that are steering clear of a falcon or a hawk? It all lies in the birds' ability to quickly and repeatedly dip to one side to avoid being attacked. ...

Blue Freedom uses power of flowing water to charge

3 hours ago

Good friends may decide to tell you something that is not true but nonetheless sustaining: Nothing is impossible. That was the case of Blue Freedom co-founder who asked his friend if it would be possible ...

Recommended for you

'Google Maps' for the body: A biomedical revolution

14 hours ago

A world-first UNSW collaboration that uses previously top-secret technology to zoom through the human body down to the level of a single cell could be a game-changer for medicine, an international research ...

New compounds could offer therapy for multitude of diseases

15 hours ago

An international team of more than 18 research groups has demonstrated that the compounds they developed can safely prevent harmful protein aggregation in preliminary tests using animals. The findings raise hope that a new ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.