Jet engines help solve the mysteries of the voice

Mar 13, 2007

Although scientists know about basic voice production—the two "vocal folds" in the larynx vibrate and pulsate airflow from the lungs—the larynx is one of the body's least understood organs.

Sound produced by vocal-fold vibration has been extensively researched, but the specifics of how airflow actually affects sound have not been shown using an animal model—until now.

Vortices, or areas of rotational motion that look like smoke rings, produce sound in jet engines. New research from the University of Cincinnati uses methods developed from the study of jet noise to identify similar vortices in an animal model.

Sid Khosla, MD, lead author of the study, says vortices may help explain why individual voices are different and can have a different richness and quality to their sound.

"If vortices didn't affect sound production, the voice would sound mechanical," says Khosla, assistant professor of otolaryngology. "The vortices can produce sound by a number of mechanisms. This complexity produces a sound that makes my voice different from yours."

Khosla and his team report their findings in the March edition of the Annals of Otology, Rhinology and Laryngology.

"Understanding how airflow patterns affect sound in a jet engine (aeroacoustics) helps us determine how we can reduce jet noise," says coauthor Ephraim Gutmark, PhD, a UC professor of aerospace engineering. "We can apply the same physical understanding of aeroacoustics to study normal and abnormal voice."

According to Khosla, computational and theoretical models have been developed to demonstrate how vortices affect sound production, but the UC team is the first to demonstrate it using an animal model, which makes their findings more applicable to the human larynx.

"Currently, when surgery is required to treat voice disorders, it's primarily done on the vocal cords," says Khosla. "Actually knowing there are additional sources that affect sound may open up a whole new way for us to treat voice disorders."

In addition to better surgery techniques, Khosla says, having a better understanding of how vortices affect voice production could help in the development of improved pharmacological approaches and clinical pathology services, as well as improved training of the voice.

Source: University of Cincinnati

Explore further: Unlocking the secrets of pulmonary hypertension

add to favorites email to friend print save as pdf

Related Stories

New search planned for grave of Spanish poet Lorca

4 minutes ago

Archeologists will start inspecting the land in an area in southern Spain near where the acclaimed poet Federico Garcia Lorca is believed to have been executed and buried at the start of the Spanish Civil War in 1936, officials ...

UN climate panel on final stretch of key report

14 minutes ago

The UN's top panel on climate change was sifting Friday through the final details of a report aimed at guiding policies on global warming for years to come, sources said.

NASA sees remnants of Nilofar go to cyclone graveyard

35 minutes ago

Wind shear has caused the demise of former Tropical Cyclone Nilofar in the northern Arabian Sea. NASA's Aqua satellite passed over Nilofar on Oct. 31 and captured an image that shows strong wind shear has ...

Strange, fanged deer persists in Afghanistan

37 minutes ago

More than 60 years after its last confirmed sighting, a strange deer with vampire-like fangs still persists in the rugged forested slopes of northeast Afghanistan according to a research team led by the Wildlife ...

Recommended for you

Cell death proteins key to fighting disease

3 hours ago

Melbourne researchers have uncovered key steps involved in programmed cell death, offering new targets for the treatment of diseases including lupus, cancers and neurodegenerative diseases.

Unlocking the secrets of pulmonary hypertension

19 hours ago

A UAlberta team has discovered that a protein that plays a critical role in metabolism, the process by which the cell generates energy from foods, is important for the development of pulmonary hypertension, a deadly disease.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.