Hairstyle of a Neuron: From Hairy to Mushroom-Head

Mar 07, 2007
Hairstyle of a Neuron: From Hairy to Mushroom-Head
Transformation of a hairy filament (top) into a dendritic spine (bottom). The activation of a certain receptor leads to the formation of the "mushroom-like" head on the dendritic spine, shown in the lower picture. This enlarged area enables the transfer of information from one nerve cell to the next. Image: Max Planck Institute of Neurobiology

Synapses are essential for the brain's normal function: their absence or presence is tightly linked to the brain's ability to transfer, process, and store information. Synapses are thus constantly generated and degraded. However, the mechanisms of this complex remodelling process remained largely unknown. Scientists of the Max Planck Institute of Neurobiology have now identified the molecular players involved in synapse formation.

One of the most prominent traits of the brain is its ability to learn and to store information. To do so, nerve cells might need to either create new sites of contact, the synapses, or to disable such sites again. For example, an increase in synaptic contacts between nerve cells is attributed to learning, while their loss can signify the loss of information. As a consequence, the total number of synapses varies constantly - not only in the developing, but also in the adult brain. This synaptic plasticity is now known as one of the key mechanisms of learning and memory processes.

To form a new synapse, hair-like filaments on opposing nerve cells differentiate into dendritic spines, each composed of a stalk which supports a large head. Information transfer between nerve cells is then possible through these enlarged spine heads. However, the mechanisms that control this conversion of a thin filament into a functional dendritic spine have until now remained a mystery.

The Max Planck scientists Inmaculada Segura, Clara Essmann, Stefan Weinges and Amparo Acker-Palmer have succeeded in unravelling one of these complex mechanisms. To achieve this, they concentrated their investigations on a specific group of receptors and their membrane-bound binding partners. Amazingly, the binding partners can also function as receptors in this system. This "reverse signalling" plays an important role in the modification of the cytoskeleton and thus in the formation of dendritic spines. The Max Planck scientists were able to identify the molecular components which control this cytoskeleton remodelling. These exciting insights into the control of synapse formation advance our knowledge of the mechanisms involved in learning and information storage by one important step.

Citation: Inmaculada Segura, Clara L. Essmann, Stefan Weinges and Amparo Acker-Palmer
Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation. Nature Neuroscience, online publication from February 18th.

Source: Max Planck Society

Explore further: Cooler bedroom temperatures may boost metabolic activity

add to favorites email to friend print save as pdf

Related Stories

Freedom of electrons is short-lived

Jun 27, 2014

During the interaction of an intense extreme-ultraviolet (XUV) laser pulse with a cluster, many ions and free electrons are created, leading to the formation of a nanoscale plasma. In experiments using XUV/X-ray ...

Discovery of a primordial cancer in a primitive animal

Jun 24, 2014

Every year around 450,000 people in Germany are diagnosed with cancer. Each one of them dreams of a victory in the battle against it. But can cancer ever be completely defeated? Researchers at Kiel University ...

Skin with high rust protection factor

Jun 04, 2014

In industrialized countries, corrosion guzzles up to 4 percent of economic performance annually. Substances that protect metals effectively from its ravages are often damaging to the environment or have other ...

A quantum logic gate between light and matter

Apr 10, 2014

Scientists at Max Planck Institute of Quantum Optics, Garching, Germany, successfully process quantum information with a system comprising an optical photon and a trapped atom.

Recommended for you

Human brain has coping mechanism for dehydration

7 hours ago

(HealthDay)—Although dehydration significantly reduces blood flow to the brain, researchers in England have found that the brain compensates by increasing the amount of oxygen it extracts from the blood. ...

User comments : 0