Hairstyle of a Neuron: From Hairy to Mushroom-Head

Mar 07, 2007
Hairstyle of a Neuron: From Hairy to Mushroom-Head
Transformation of a hairy filament (top) into a dendritic spine (bottom). The activation of a certain receptor leads to the formation of the "mushroom-like" head on the dendritic spine, shown in the lower picture. This enlarged area enables the transfer of information from one nerve cell to the next. Image: Max Planck Institute of Neurobiology

Synapses are essential for the brain's normal function: their absence or presence is tightly linked to the brain's ability to transfer, process, and store information. Synapses are thus constantly generated and degraded. However, the mechanisms of this complex remodelling process remained largely unknown. Scientists of the Max Planck Institute of Neurobiology have now identified the molecular players involved in synapse formation.

One of the most prominent traits of the brain is its ability to learn and to store information. To do so, nerve cells might need to either create new sites of contact, the synapses, or to disable such sites again. For example, an increase in synaptic contacts between nerve cells is attributed to learning, while their loss can signify the loss of information. As a consequence, the total number of synapses varies constantly - not only in the developing, but also in the adult brain. This synaptic plasticity is now known as one of the key mechanisms of learning and memory processes.

To form a new synapse, hair-like filaments on opposing nerve cells differentiate into dendritic spines, each composed of a stalk which supports a large head. Information transfer between nerve cells is then possible through these enlarged spine heads. However, the mechanisms that control this conversion of a thin filament into a functional dendritic spine have until now remained a mystery.

The Max Planck scientists Inmaculada Segura, Clara Essmann, Stefan Weinges and Amparo Acker-Palmer have succeeded in unravelling one of these complex mechanisms. To achieve this, they concentrated their investigations on a specific group of receptors and their membrane-bound binding partners. Amazingly, the binding partners can also function as receptors in this system. This "reverse signalling" plays an important role in the modification of the cytoskeleton and thus in the formation of dendritic spines. The Max Planck scientists were able to identify the molecular components which control this cytoskeleton remodelling. These exciting insights into the control of synapse formation advance our knowledge of the mechanisms involved in learning and information storage by one important step.

Citation: Inmaculada Segura, Clara L. Essmann, Stefan Weinges and Amparo Acker-Palmer
Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation. Nature Neuroscience, online publication from February 18th.

Source: Max Planck Society

Explore further: Gene mutation discovered in blood disorder

add to favorites email to friend print save as pdf

Related Stories

Solar fuels as generated by nature

Aug 21, 2014

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

Illuminating the dark side of the genome

Jul 29, 2014

Almost 50 percent of our genome is made up of highly repetitive DNA, which makes it very difficult to be analysed. In fact, repeats are discarded in most genome-wide studies and thus, insights into this part ...

A transistor-like amplifier for single photons

Jul 29, 2014

Data transmission over long distances usually utilizes optical techniques via glass fibres – this ensures high speed transmission combined with low power dissipation of the signal. For quite some years ...

Recommended for you

Infant cooing, babbling linked to hearing ability

1 hour ago

Infants' vocalizations throughout the first year follow a set of predictable steps from crying and cooing to forming syllables and first words. However, previous research had not addressed how the amount ...

Developing 'tissue chip' to screen neurological toxins

2 hours ago

A multidisciplinary team at the University of Wisconsin-Madison and the Morgridge Institute for Research is creating a faster, more affordable way to screen for neural toxins, helping flag chemicals that ...

Gene mutation discovered in blood disorder

6 hours ago

An international team of scientists has identified a gene mutation that causes aplastic anemia, a serious blood disorder in which the bone marrow fails to produce normal amounts of blood cells. Studying a family in which ...

Airway muscle-on-a-chip mimics asthma

8 hours ago

The majority of drugs used to treat asthma today are the same ones that were used 50 years ago. New drugs are urgently needed to treat this chronic respiratory disease, which causes nearly 25 million people ...

User comments : 0