Decoy pill saves brain cells

Jan 31, 2007

Tricking a key enzyme can soothe over-excited receptors in the brain, say neuroscientists, calling this a possible strategy against stroke, Alzheimer's and other neurodegenerative diseases.

Lead author Michel Baudry of the University of Southern California, his graduate student Wei Xu and collaborators from the University of British Columbia outline their technique in the Feb. 1 issue of Neuron.

The researchers injected laboratory mice with a decoy peptide containing a snippet of a receptor that facilitates cell death in neurodegenerative diseases.

They hoped the toxic enzyme calpain would latch on to the decoy instead of the actual receptor, averting brain damage.

As a test, the researchers then injected the mice with kainic acid, a chemical known to cause seizures and neuron death.

While seizures still occurred, as in control mice, no brain lesions were observed in the subjects.

"We eliminate a big chunk of neuronal death," Baudry said. "I was surprised that this works. It looks like the peptide is almost completely neuroprotective."

Baudry, one of USC’s most frequently cited researchers, has been studying calpain and other chemicals in the brain for more than 20 years.

Scientists have known for decades that the neurotransmitter glutamate, which tells neurons to fire, can also destroy them. If over-activated, glutamate receptors start a chain reaction that raises the concentration of calcium and activates calpain, among other toxic enzymes.

But Baudry and Xu observed that in one receptor, mGluR1?, the situation is even worse. Under normal conditions, this receptor is neuroprotective. However, calpain truncates it and makes it neurodegenerative in such a way as to start a positive feedback loop that leads to ever-higher levels of calcium and continuous calpain activation.

In addition, by cutting mGluR1?, calpain eliminates its neuroprotective function.

The decoy, developed by Xu, reversed the outcomes. By tricking calpain, it prevented damage to the receptor and allowed the beneficial reaction to continue. In addition, it interrupted the feedback loop that stoked calpain activation.

"This is potentially a treatment for any conditions that involve this kind of excitotoxicity," Baudry said, and especially, he added, for the "window of opportunity" in the few hours after a stroke.

While a stroke kills some brain cells right away, others take much longer to die. If the stroke triggered a calcium-calpain feedback loop, treatment with decoy peptides might save some cells, Baudry said.

His group plans to test the treatment in a stroke model in mice.

Source: University of Southern California

Explore further: Ultrasound enhancement provides clarity to damaged tendons, ligaments

add to favorites email to friend print save as pdf

Related Stories

The Mechanisms of Memory

Mar 09, 2010

(PhysOrg.com) -- USC College's Michel Baudry and graduate student Sohila Zadran brought forty years of research to a pinnacle with their breakthroughs in the science of learning and memory.

Memory molecule, deja vu

Jan 19, 2010

A second high-profile paper in as many months has found an important role in learning and memory for calpain, a molecule whose academic fortunes have ebbed and flowed for 25 years.

Cut out the (estrogen) middleman

Dec 08, 2009

Estrogen seems to act like a middleman in its positive effect on the brain, raising the possibility that future drugs may bypass the carcinogenic hormone altogether while reaping its benefits.

Recommended for you

A better way to track emerging cell therapies using MRIs

Sep 19, 2014

Cellular therapeutics – using intact cells to treat and cure disease – is a hugely promising new approach in medicine but it is hindered by the inability of doctors and scientists to effectively track the movements, destination ...

User comments : 0