'Quiet revolution' may herald new RNA therapeutics

Jan 21, 2007

Scientists at the University of Oxford have identified a surprising way of switching off a gene involved in cell division. The mechanism involves a form of RNA, a chemical found in cell nuclei, whose role was previously unknown, and could have implications for preventing the growth of tumour cells.

RNA plays an important and direct role in the synthesis of proteins, the building blocks of our bodies. However, scientists have known for some time that not all types of RNA are directly involved in protein synthesis. Now, in research funded by the Wellcome Trust and the Medical Research Council, a team of scientists has shown that one particular type of RNA plays a key role in regulating the gene implicated in control of tumour growth. The research is published online today in Nature.

The Human Genome Project identified about 34,000 genes responsible for producing proteins. The remaining part – in fact, most of the genome – constituted what was considered to be "junk" DNA with no function. However, latest estimates show that this "junk" DNA produces around half a million varieties of RNA of unknown functions.

"There's been a quiet revolution taking place in biology during the past few years over the role of RNA," says Dr Alexandre Akoulitchev, a Senior Research Fellow at the University of Oxford. "Scientists have begun to see 'junk' DNA as having a very important function. The variety of RNA types produced from this "junk" is staggering and the functional implications are huge."

The particular form of RNA that has been of interest to Dr Akoulitchev's team is involved in regulation of the dihydrofolate reductase gene (DHFR), determining whether the gene is "on" or "off". The DHFR gene produces an enzyme that controls thymine production, necessary in rapidly dividing cells.

"Inhibiting the DHFR gene could help prevent the growth of neoplastic cancerous cells, ordinary cells which develop into tumour cells, such as in prostate cancer cells," explains Dr Akoulitchev. "In fact, the first anti-cancer drug, Methotrexate, acts by binding and inhibiting the enzyme produced by this gene."

Dr Akoulitchev believes that understanding how we can use the RNA to switch off or inhibit DHFR and other genes may have important therapeutic implications for developing new anti-cancer treatments.

Source: Wellcome Trust

Explore further: Secret of tetanus toxicity offers new way to treat motor neuron disease

add to favorites email to friend print save as pdf

Related Stories

Volcano in south Japan erupts, disrupting flights

27 minutes ago

A volcano in southern Japan is blasting out chunks of magma in the first such eruption in 22 years, causing flight cancellations and prompting warnings to stay away from its crater.

Bad weather delays Japan asteroid probe lift off

29 minutes ago

Bad weather will delay the launch of a Japanese space probe on a six-year mission to mine a distant asteroid, just weeks after a European spacecraft's historic landing on a comet captivated the world.

Recommended for you

Stroke damage mechanism identified

Nov 27, 2014

Researchers have discovered a mechanism linked to the brain damage often suffered by stroke victims—and are now searching for drugs to block it.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.