Combination of technologies works best against E. coli

Dec 12, 2006

No one weapon in the food-safety arsenal will take out E. coli 0157:H7, a nasty little pathogen that’s becoming far too familiar to Americans, say University of Illinois scientists Scott Martin and Hao Feng.

And they should know because they work on this problem in their labs every day. The food science professors work with ozone, high-intensity ultrasound, electrolyzed water, irradiation, and temperature, and they say no treatment singlehandedly can reduce the number of pathogens sufficiently to meet the standards set by the FDA.

"We don’t believe there’s any one technique out there that’s going to be effective," said Martin. "We’re constantly trying different combinations to achieve the 5-log (99.999 percent) reduction in the number of organisms required by the FDA," he said.

"Obviously maintaining quality is a real challenge because if you do anything very harsh to something like spinach or lettuce, the product won’t be acceptable even if it’s pathogen-free," Martin said.

Both scientists believe they’re getting closer to a solution. "With ultrasound, we can actually damage the pathogen’s cells to the point that they can’t be repaired. Ultrasound is a complicated technology, and we’re still trying to learn how to use it effectively. But this technology causes physical damage--ruptures in the pathogen’s cells--and that’s important," said Feng.

In Martin’s lab, a graduate student has eliminated all Listeria monocytogenes on a stainless steel chip in 30 seconds, using a combination of ultrasound and ozone. This extremely positive result has promising implications for the sanitation of processing equipment, the scientist said.

And Martin said the scientists have reduced the length of time it takes to reach the FDA’s 5-log reduction standard to 30 seconds, which may still be too long for industry. "The thing is we’re making steady progress," he said.

And the work goes on. Feng’s use of ultrasound, irradiation, and acidic electrolyzed water to eliminate E. coli on alfalfa and broccoli seeds and his use of high-intensity ultrasound to eliminate E. coli in apple cider were published in the February and June 2006 issues of the Journal of Food Science.

Their work on inactivation of E. coli 0157:H7 with peroxyacetic acid, acidic electrolyzed water, and chlorine on cantaloupes and fresh-cut apples was published in the November 2006 article of the Journal of Food Safety.

"We’ve shown that we have some effective weapons to use against the pathogens that have been in the news so often lately," Martin said. "But we’ve seen the best results when we’ve combined the various technologies."

Source: University of Illinois at Urbana-Champaign

Explore further: The impact of bacteria in our guts

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

The impact of bacteria in our guts

2 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

2 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

3 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

22 hours ago

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 0