Stem cells found in adult hair follicles may provide alternative to embryonic stem cells

Dec 12, 2006

Having recently identified the molecular signature of these epidermal neural crest stem cells in the mouse, their research resolves conflicting scientific opinions by showing that these cells are distinctly different from other types of skin-resident stem cells/progenitors. Their work provides a valuable resource for future mouse neural crest stem cell research.

A report on the research from Dr. Maya Sieber-Blum's laboratory, co-authored by Yao Fei Hu, Ph.D., and Zhi-Jian Zhang, Ph.D., researchers in cell biology, neurobiology and anatomy at the Medical College, was published in a recent issue of Stem Cells: The International Journal of Cell Differentiation and Proliferation.

Epidermal neural crest stem cells are found in the bulge of hair follicles and have characteristics that combine some advantages of embryonic and adult stem cells, according to lead researcher, Maya Sieber-Blum, Ph.D., professor of cell biology, neurobiology & anatomy. Similar to embryonic stem cells, they have a high degree of plasticity, can be isolated at high levels of purity, and can be expanded in culture. Similar to other types of adult stem cells, they are readily accessible through a minimally invasive procedure and could lead to using a patient's own hair as a source for therapy without the controversy or medical issues of embryonic stem cells.

"We see the potential for cell replacement therapy in which patients can be their own donors, which would avoid ethical issues and reduce the possibility of tissue incompatibility," says Dr. Sieber-Blum.

The Medical College team in collaboration with Prof. Martin Schwab, director of the Brain Research Institute of the University of Zürich, recently injected these cells in mice with spinal cord injuries. According to the study, when grafted into the spine, the cells not only survived, but also demonstrated several desirable characteristics that could lead to local nerve replacement and re-myelination (restoration of nerve pathways and sheaths).

Neural crest stem cells generate a wide array of cell types and tissues and actually give rise to the autonomic and enteric nervous systems along with endocrine cells, bone and smooth muscle cells. The cells can be isolated from the hair follicle bulge as multipotent stem cells, and then expanded in culture into millions of cells without losing stem cell markers.

"We grafted the cells into mice that have spinal cord injuries and were encouraged by the results. The cells survived and integrated into the spinal cord, remaining at the site of transplantation and not forming tumors," Dr. Sieber-Blum says.

According to Dr. Sieber-Blum, subsets of the epidermal neural crest stem cells express markers for oligodendrocytes, the nerve-supporting cells that are essential for proper neuron function. She has been awarded a grant from the Biomedical Technology Alliance, a Milwaukee inter-institutional research group, to determine in collaboration with Brian Schmit, Ph.D., associate professor of biomedical engineering at Marquette University, if the grafts lead to an improvement of spinal reflexes in the injured spinal cord of mice.

Dr. Sieber-Blum points out that the cells may also be useful to treat Parkinson's disease, multiple sclerosis, Hirschsprung's disease, stroke, peripheral neuropathies and ALS. Certain defects of the heart, and bone defects (degeneration, craniofacial birth defects) could also be treated through neural crest stem cell replacement therapy. Together, these conditions affect over 11 million people today in the US and are estimated to annually cost more than $170 billion.

Source: Medical College of Wisconsin

Explore further: Missing protein restored in patients with muscular dystrophy

add to favorites email to friend print save as pdf

Related Stories

Animal-free reprogramming of adult cells improves safety

Aug 13, 2014

Human stem cells produced through genetic reprogramming are beset by safety concerns because current techniques alter the DNA of the stem cells and use material from animals to grow them. Now, A*STAR researchers ...

Venom gets good buzz as potential cancer-fighter

Aug 11, 2014

Bee, snake or scorpion venom could form the basis of a new generation of cancer-fighting drugs, scientists will report here today. They have devised a method for targeting venom proteins specifically to malignant cells while ...

On the frontiers of cyborg science

Aug 10, 2014

No longer just fantastical fodder for sci-fi buffs, cyborg technology is bringing us tangible progress toward real-life electronic skin, prosthetics and ultraflexible circuits. Now taking this human-machine concept to an ...

Recommended for you

Student seeks to improve pneumonia vaccines

18 hours ago

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

20 hours ago

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

User comments : 0