DNA code breaker tested theory on Jane Austen text

Nov 17, 2006

A researcher at the University of Bradford has perfected a computer programme that could unlock the secrets of the human genome and pave the way towards new treatments and drugs sooner than had been expected.

As reported in this week’s edition of the journal Nature Professor Simon Shepherd has constructed an algorithm that can unpick the sequences of As, Gs, Cs and Ts that make up the world’s genomes.

Professor Shepherd, who is Professor of Computational Mathematics at the University of Bradford, has been working on genomics with Professor Clive Beggs (Professor of Medical Technology) and Dr Sue Jones (Lecturer in Biomedical Science) in Bradford’s Medical Biophysics Research Group.

Professor Shepherd originally tested his computer programme on the entire text of Emma by Jane Austen after removing all the spaces and punctuation, leaving just a long impenetrable line of letters. Despite having no knowledge of the English vocabulary or syntax, the programme managed to identify 80 per cent of the words and separate them back into sentences.

Professor Shepherd believes that this can be applied to the genetic sequence, which contains around 3 billion letters and is currently baffling scientists as to how to interpret it. Within these sequence there is information that nobody knows how to extract – codes that regulate, control or describe all kinds of cellular processes.

Professor Shepherd believes that his method of number crunching will be able to make an interpretation. He said: “We are treating DNA as we used to treat problems in intelligence. We want to break the code at the most fundamental level.”

A human cell has to fit about two metres of DNA into a nucleus a few micrometres in diameter, which requires packing it together with proteins in a complex hierarchy of ‘folding back and wrapping around’. The fundamental element underlying all this packaging is the nucleosome – 147 base pairs of DNA wrapped around a globule of eight proteins called ‘histones’.

Professor Shepherd added: “The protein folding problem is regarded as one of the three grand challenge problems of 21st century science. Its resolution is crucial to the development of the new drugs and medical therapies that the Human Genome project promises one day to deliver.

“I believe that the combination of insights from the hard, numerate sciences such as mathematics and engineering, coupled with expert knowledge of the biochemistry at the cellular level, will prove to be the most fruitful approach.

“Although results will not happen overnight, we can expect to see the promise of the Human Genome project bearing fruit within the next 20 to 50 years.”

Citation: Nature, pg 259, Vol. 444, 16 November 2006

Source: University of Bradford

Explore further: First genetic link discovered to difficult-to-diagnose breast cancer sub-type

add to favorites email to friend print save as pdf

Related Stories

Researchers identifies gene associated with eczema in dogs

May 09, 2013

A novel gene associated with canine atopic dermatitis has been identified by a team of researchers led by professors Kerstin Lindblad-Toh, Uppsala university and Åke Hedhammar, SLU, Sweden. The gene encodes a protein called ...

'Copper pump's' potential benefit in cancer treatment

May 17, 2012

(Phys.org) -- A team of University of California, San Diego researchers has made new discoveries about a copper-transporting protein in the membranes of human cells that drug-discovery scientists can co-opt ...

Investigating the domestication of dogs through DNA

Feb 25, 2011

Most animal lovers can't resist bringing home the occasional stray dog. Imagine, then, having to fight this impulse every day, and on the other side of the world, all while trying to maintain some measure ...

Recommended for you

Refining the language for chromosomes

Apr 17, 2014

When talking about genetic abnormalities at the DNA level that occur when chromosomes swap, delete or add parts, there is an evolving communication gap both in the science and medical worlds, leading to inconsistencies in ...

Down's chromosome cause genome-wide disruption

Apr 16, 2014

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

User comments : 0

More news stories

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...