Engineering a 'Trojan horse' to sneak drugs into the brain

Sep 13, 2006

Beset by a host of debilitating and potentially fatal disorders, the human brain is in desperate need of a few good drugs. The catch, however, is that nature has set up a roadblock known as the blood-brain barrier — intended to keep harmful agents out — that prevents clinicians from administering effective medicine.

Now, scientists have hit upon a scheme that could be used to sneak drugs past the barrier to treat afflictions such as Parkinson's, Alzheimer's, brain tumors and stroke. The idea, according to Eric V. Shusta, a University of Wisconsin-Madison professor of chemical and biological engineering, is to exploit human antibodies by transforming them into "Trojan horses" capable of ferrying payloads of drugs from the blood across the barrier and into the parts of the brain where they will do the most good.

Describing the new work in San Francisco today (Sept. 13) at a meeting of the American Chemical Society, Shusta described a system where antibodies capable of penetrating the blood-brain barrier could be used to carry drugs, DNA or even therapeutic nanoparticles to the brain.

"There are many drugs that show promise in the Petri dish," Shusta explains. "We just can't deliver them."

The scheme being explored by Shusta and his colleagues rests on the ability of antibodies, protein molecules that circulate in the blood and whose job, typically, is to seek out and neutralize foreign pathogens and toxins before they do harm. Antibodies are good at such work because they are built to recognize the surface features of targeted cells.

Using engineered yeast as microscopic factories to produce human antibodies customized to recognize the surface features of cells that compose the blood-brain barrier, Shusta has developed a set of unique antibodies that may one day be used to ferry drugs to specified regions of the brain.

"Antibodies bind tightly and specifically to cells, and we're trying to find those that home in on the blood-brain barrier endothelial cells," Shusta says.

When antibodies bind to cells, they can sometimes gain access to the cell and, potentially, open a gateway for the delivery of drugs or other therapeutic agents.

"We'd like to use the bloodstream to deliver drugs, but most small molecule pharmaceuticals as well as larger protein and gene medicines cannot pass the blood-brain barrier," he says.

With roughly 400 miles of blood vessels, the human brain is equipped with its own expansive delivery network for therapy — provided scientists are able to figure out a way to get past the blood-brain barrier. With different cell surface features in different parts of the circulatory system and also in different regions of the brain, it might be possible to customize antibodies to carry drugs to only those parts of the brain that would benefit from treatment.

So far, Shusta and his colleagues have identified a panel of unique antibodies that avidly bind to the plasma membranes of brain endothelial cells. In some cases, the antibodies engineered by the Wisconsin team have demonstrated the capacity to gain access to the cell, showing their "potential to act as molecular Trojan horses and allow blood-to-brain transfer of a wide range of pharmaceuticals."

The idea of using antibodies to tote drugs into the brain is not new, according to Shusta, but the antibodies used to date are not particularly efficient. The work of Shusta's group, however, has shown it is possible to identify novel transporting antibodies that could one day provide effective alternatives. "Ours is a novel system," Shusta adds. "We're still trying to work out the specifics, but we're pretty excited."

Source: University of Wisconsin-Madison

Explore further: Obama addresses West Africans on facts about Ebola

add to favorites email to friend print save as pdf

Related Stories

Researcher developing novel therapy for Alzheimer's disease

Jul 08, 2010

A University of Oklahoma researcher is developing a novel therapy for Alzheimer's disease using "biopharmaceutical proteases" to attack the toxic plaque that builds up in the brain of an Alzheimer's patient -- an approach ...

A tiny, time-released treatment

Oct 09, 2013

Omid Farokhzad's vision of medicine's future sounds a lot like science fiction. He sees medicine scaled down, with vanishingly small nanoparticles playing a big role, delivering drug doses measured in molecules ...

Recommended for you

Obama addresses West Africans on facts about Ebola

2 hours ago

President Barack Obama urged West Africans on Tuesday to wear gloves and masks when caring for Ebola patients or burying anyone who died of the disease. He also discouraged the traditional burial practice ...

Gluten-free diet benefits asymptomatic EmA+ adults

2 hours ago

(HealthDay)—Asymptomatic individuals with endomysial antibodies (EmA) benefit from a gluten-free diet (GFD), according to a study published in the September issue of Gastroenterology.

Another US health worker infected with Ebola

3 hours ago

A third American health worker has tested positive for the Ebola virus while working with patients in West Africa, the Christian missionary group SIM said Tuesday.

UN implores all countries to help on Ebola

5 hours ago

The international group Doctor Without Borders warned Tuesday that the world is 'losing the battle' against Ebola, while U.N. officials implored all countries to quickly step up their response by contributing health experts ...

Travel restrictions could worsen Ebola crisis: experts

9 hours ago

Travel restrictions could worsen West Africa's Ebola epidemic, limiting medical and food supplies and keeping out much-needed doctors, virologists said Tuesday as the disease continued its deadly spread.

User comments : 0