Mental maturity scan tracks brain development

Sep 09, 2010 By Michael C. Purdy
Researchers have shown that functional brain networks have the potential to help physicians probe psychiatric and developmental disorders. In this graphic, the brain regions that are important to assessing the maturity of the brain are shown as spheres, with the size of the sphere representing the region's relative importance. Different sphere colors identify brain regions as members of different functional networks. The orange connections strengthen and the green connections weaken as the brain progresses toward adulthood.

(PhysOrg.com) -- Five minutes in a scanner can reveal how far a child's brain has come along the path from childhood to maturity and potentially shed light on a range of psychological and developmental disorders, scientists at Washington University School of Medicine in St. Louis have shown.

Researchers assert this week in Science that their study proves imaging data can offer more extensive help in tracking aberrant brain development.

"Pediatricians regularly plot where their patients are in terms of height, weight and other measures, and then match these up to standardized curves that track typical developmental pathways," says senior author Bradley Schlaggar, MD, PhD, a Washington University pediatric neurologist. "When the patient deviates too strongly from the standardized ranges or veers suddenly from one developmental path to another, the physician knows there's a need to start asking why."

Schlaggar and his colleagues say a new way of looking at brain scanning data may be able to provide similar guidance for monitoring and treating of patients with psychiatric and developmental disorders.

Schlaggar, the A. Ernest and Jane G. Stein Associate Professor of Neurology, says he has sent children with obvious, profound for MRI scans and received results marked "no abnormalities noted."

"That's typically looking at the data from a structural point of view—what's different about the shapes of various brain regions," he says. "But MRI also offers ways to analyze how different parts of the brain work together functionally."

Compare functional data to standardized models of how or disease normally develops, Schlaggar says, and a range of new clinical insights becomes available.

Schlaggar and his colleagues use an approach to brain scanning called resting state . By correlating increases and decreases in blood flow to the various as subjects rest in the scanner, scientists determine which of these regions work together in brain networks.

In a study published in 2009, Washington University scientists showed that as the brain matures, these brain networks change (see http://phys.org/news161605421.html). The overall organization switches from networks involving regions physically close to each other, which is the dominant motif in a child's brain, to networks that connect distant regions, the primary organizational principal in adult brains.

For the new study, lead author Nico Dosenbach, MD, PhD, a pediatric neurology resident at St. Louis Children's Hospital, took this and other distinctions that mark the transition from child to adult brain and adapted them for use in a technique for mathematical analysis called a support vector machine. The technique is employed in many contexts in science and economics and on the Internet.

Mental maturity scan tracks brain development
Researchers charted the results of 238 brain maturity analyses, with age on the horizontal axis and maturity on the vertical axis.

"It's a way that mathematicians have developed for predicting something with high specificity and sensitivity when you have huge amounts of data instead of one really good measurement," Dosenbach explains. "Any one of these measurements doesn't tell you much, but if you put them together and use the right math to sift through and restructure them, you can get good predictive results."

Dosenbach used data from five-minute MRI scans of 238 normal subjects ranging in age from 7 to 30. The support vector machine analyzed approximately 13,000 functional brain connections and selected the best 200 produce a single index of the maturity of each subject. The data allowed scientists to predict whether subjects were children or adults, and roughly formed a curving line that tracks the path of normal functional .

The researchers suspect patients with brain disorders will appear out of alignment with this normal developmental curve.

"The beauty of this approach is that it lets you ask what's different in the way that children with autism, for example, are off the normal development curve versus the way children with attention-deficit disorder are off that curve," Schlaggar says.

Schlaggar suggests that functional brain scans might be conducted on a group of children at risk but not yet suffering from a developmental disorder.

"When a fraction of them later develop that disorder, you can go back and construct an analysis like this one that will help predict the characteristics of the next child at highest risk of developing the disorder," he says. "That's very powerful both clinically and from the perspective of understanding the causes of these disorders."

This approach might enable treatment prior to onset of symptoms, Schlaggar says, and should help physicians more quickly and closely track the results of clinical trials of new therapies.

"MRI scans are expensive, so this may not be what we use for everyone right now," Dosenbach says. "But many children with these types of disorders already receive regular structural MRI scans, and five more minutes in the scanner won't add that much to the cost."

Explore further: Know the brain, and its axons, by the clothes they wear

More information: Dosenbach NUF, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR JR, Barch DM, Petersen SE, Schlaggar BL. Prediction of individual brain maturity using fMRI. Science, Sept. 10, 2010.

Related Stories

Adult and child brains perform tasks differently

May 11, 2005

Children activate different and more regions of their brains than adults when they perform word tasks, according to investigators at Washington University School of Medicine in St. Louis. Reporting in the ...

Researchers study the idling brain

May 07, 2009

Oregon Health & Science University researchers, along with scientists at Washington University in St. Louis, are uncovering new information about the mind by studying the brain while it is at rest. It is believed this research ...

Scans of brain networks may help predict injury's effects

Mar 23, 2010

Clinicians may be able to better predict the effects of strokes and other brain injuries by adapting a scanning approach originally developed for study of brain organization, neurologists at Washington University ...

Brain scans used to predict behavior

Nov 30, 2005

Washington University scientists in St. Louis say they can predict whether people will win or lose a brief visual game by analyzing their brain scans.

Recommended for you

Know the brain, and its axons, by the clothes they wear

Apr 18, 2014

(Medical Xpress)—It is widely know that the grey matter of the brain is grey because it is dense with cell bodies and capillaries. The white matter is almost entirely composed of lipid-based myelin, but ...

Turning off depression in the brain

Apr 17, 2014

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Rapid whole-brain imaging with single cell resolution

Apr 17, 2014

A major challenge of systems biology is understanding how phenomena at the cellular scale correlate with activity at the organism level. A concerted effort has been made especially in the brain, as scientists are aiming to ...

User comments : 0

More news stories

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.