A new role for insulin in cell survival, cell metabolism and stress response

Sep 07, 2010

Researchers at the Buck Institute for Age Research have discovered a novel way in which insulin affects cell metabolism and cell survival. Surprisingly the insulin signaling pathway, which is involved in aging, diabetes and stress response, is active at a deeper level of cell activity than scientists expected. The study appears in the September 8th issue of Cell Metabolism.

Insulin is vitally involved in many cell functions. Buck Institute faculty and lead author Gordon Lithgow, PhD, says scientists have known for years that insulin is involved at the level of cell activity called transcription, where DNA produces . Lithgow said the new research, in the nematode worm C. elegans, revealed that insulin is also active at the level known as translation, where RNA specifies .

Lithgow says the discovery of this new level of regulation opens a host of opportunities. "We are desperate to understand why aging is a risk factor for disease, we want to know why diabetes is associated with aging," said Lithgow. "Here we have a insulin signaling pathway involved in aging, diabetes and . This gives us more precise avenues to explore how we might intervene in disease," he said.

Using long-lived mutant worms, researchers demonstrated that increased tolerance to stress, due to lower insulin signaling, is not dependent on stress-induced responses at the level of transcription, but instead requires active translation.

Lithgow says the research fits in with work being done in the Buck Institute laboratories of Brian Kennedy and Pankaj Kapahi, all of which point to the importance of translation. Lithgow, who directs the Institute's Geroscience program, says the research will lead to new collaborations. "This work highlights the importance of protein homeostasis - the maintenance of metabolic equilibrium," said Lithgow. "What proteins are made within the cell? When are they made? How and when are they gotten rid of? What happens when they are damaged?" Lithgow thinks control of protein homeostasis is vital for healthy aging and is intrinsically involved in diseases such as Parkinson's and Alzheimer's where protein homeostasis seems to get muddled up. "It's about connections," said Lithgow, "Now we need to connect with what is known about in diabetes with various disease states; we need to know how this small part of fits into the bigger picture of aging and disease."

Explore further: Reconstruction of a patterned piece of spinal cord in 3D culture

Provided by Buck Institute for Age Research

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Joslin researchers discover new effect for insulin

Mar 20, 2008

Researchers at the Joslin Diabetes Center have shown that insulin has a previously unknown effect that plays a role in aging and lifespan, a finding that could ultimately provide a mechanism for gene manipulations that could ...

Stem cell research uncovers mechanism for type 2 diabetes

Feb 12, 2009

Taking clues from their stem cell research, investigators at the University of California San Diego (UC San Diego) and Burnham Institute for Medical Research (Burnham) have discovered that a signaling pathway involved in ...

'Anti-Atkins' low protein diet extends lifespan in flies

Oct 01, 2009

Flies fed an "anti-Atkins" low protein diet live longer because their mitochondria function better. The research, done at the Buck Institute for Age Research, shows that the molecular mechanisms responsible for the lifespan ...

Reducing insulin signaling in the brain can prolong lifespan

Jul 19, 2007

One route to a long and healthy life may be establishing the right balance in insulin signaling between the brain and the rest of the body, according to new research from Children’s Hospital Boston. The study, published ...

Completely novel action of insulin unveiled

Nov 05, 2008

A PhD student at Sydney's Garvan Institute of Medical Research has uncovered an important piece in the puzzle of how insulin works, a problem that has plagued researchers for more than 50 years. This finding brings us one ...

Recommended for you

New molecule sneaks medicines across the blood/brain barrier

2 hours ago

Delivering life-saving drugs across the blood-brain barrier (BBB) might become a little easier thanks to a new report published in the November 2014 issue of The FASEB Journal. In the report, scientists describe an antibo ...

Clock gene dysregulation may explain overactive bladder

2 hours ago

If you think sleep problems and bladder problems are a fact of life in old age, you may be right. A new report appearing in the November 2014 issue of The FASEB Journal, shows that our sleep-wake cycles are genetically connec ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.