Link between cellular glue and cancer growth

Aug 31, 2010

Scientists have discovered that a protein that helps make cells sticks together also keeps them from dividing excessively, a hallmark of cancer progression. The discovery could lead to new ways to control cancer.

The findings, arising from a collaboration between Aaron Putzke, assistant professor of biology at Hope College in Holland, Mich., and Joel H. Rothman, a biology professor and chair of the Department of Molecular, Cellular and Developmental Biology at UC Santa Barbara, were described in a paper published in the .

"When we develop from an egg, cells divide many times, generating the vast number of cells present in an adult," Rothman said. "It is not only critical for cells to know when to divide, but when to stop dividing."

Putzke added: "Without this brake on division, cells would keep dividing and we might end up with arms that reach the ground or ears that flap in the wind. Or, even more seriously, with ."

It is equally important, according to Rothman, for cells to stick to each other so that they can work together in communities, rather than as free agents with no regard for the others around them. Cancer cells do not stick together properly, allowing them to break free from the community and spread the disease.

Working with a tiny roundworm known as C. elegans, a major experimental model animal in biomedical science, the scientists discovered that a protein called Fer, which acts with other proteins to glue cells together, also prevents them from dividing excessively. When Fer is removed from cells, the researchers found that they keep proliferating. Their experiments may mimic what happens in certain human cancers.

"Other studies have shown that Fer protein levels are altered in cancers such as prostate cancer and myeloid leukemia," said Putzke. The Fer protein was well known for its role in sticking cells together, and the obvious conclusion was that the role in was related to its function in cellular glue. But Putzke noted that altered Fer levels might actually be associated with tumors for a very different reason. "Our results suggest that Fer may act in cancer not by changing cell adhesion but by allowing cells to divide unchecked."

The research showed that the Fer protein normally acts by constraining a cell signaling system known as the Wnt (pronounced "wint") that causes cells to multiply. When the Fer protein is absent, the Wnt signal becomes overzealous, overriding the normal brakes on cell division and causing cells to multiply when they shouldn't.

"Cell stickiness and the brake on multiplication of cells are coordinated during normal human development and both are affected in cancer," said Rothman, adding that the results are a reminder that obvious conclusions are not always the correct ones. "A complex set of events goes wrong in . It may well be that Fer is an important player in cancer because it acts both in cell adhesion and in stopping from dividing."

Explore further: Targeted treatment could halt womb cancer growth

Provided by UC Santa Barbara

4.8 /5 (6 votes)

Related Stories

Scientists isolate cancer stem cells

Sep 11, 2008

After years of working toward this goal, scientists at the OU Cancer Institute have found a way to isolate cancer stem cells in tumors so they can target the cells and kill them, keeping cancer from returning.

Researchers shed light on how tumor cells form

Jun 21, 2006

MIT cancer researchers have discovered a process that may explain how some tumor cells form, a discovery that could one day lead to new therapies that prevent defective cells from growing and spreading.

Recommended for you

Study pinpoints microRNA tied to colon cancer tumor growth

35 minutes ago

Researchers at the University of Minnesota have identified microRNAs that may cause colon polyps from turning cancerous. The finding could help physicians provide more specialized, and earlier, treatment before colon cancer ...

Obesity tied to higher cancer risk for CRC survivors

1 hour ago

(HealthDay)—Colorectal cancer (CRC) patients who are overweight or obese when diagnosed appear to face a slightly higher risk for developing a second weight-related cancer, according to research published ...

User comments : 0