Researchers find gene responsible for neurodegenerative disease in dogs, possibly in humans

Aug 23, 2010

(PhysOrg.com) -- A North Carolina State University researcher has helped to locate and identify a gene responsible for a fatal neurodegenerative disease that affects American Staffordshire terriers. This same gene may be responsible for a similar rare, fatal disease in humans. Its discovery will lead to improved screening and diagnosis of the disease in dogs and is the first step in working toward a cure for both canines and humans.

Dr. Natasha Olby, associate professor of neurology, was part of a multi-national team of researchers who located the gene responsible for a variant of neuronal ceroid lipofuscinoses (NCL), a family of diseases that result in mental and motor deterioration - and eventually death - in the dogs.

The team’s results were published in the Aug. 17 issue of the .

NCLs, while rare in humans, are most common in children, although an adult-onset form of the disease - known as Kufs’ disease - does occur. In this adult disease, neurons within the brain gradually die, causing loss of vision, epilepsy, and loss of coordination.

Olby saw the first case of a canine version of adult-onset NCL in American Staffordshire terriers in 2000. Over subsequent years, she found that the disease was a widespread and hereditary problem within the breed, affecting one of every 400 registered dogs. The disease kills the in the cerebellum, which controls balance. Over time, the cerebellum shrinks, motor control deteriorates, and the patient dies or is euthanized.

“The disease became so prevalent because it was a recessive disease with a late onset,” says Olby. “Carriers of a single copy of the mutated gene never develop symptoms, and dogs with two copies of the gene might not show symptoms until five or six years of age, so the mutation was able to take hold in the breeding population.”

Through , the research group was able to locate the specific gene - an entirely novel mutation that has not been reported in people. According to Olby, the novel nature of the mutation means that researchers can now test samples from humans with NCL to determine whether this same mutation causes Kufs’ disease in people.

“The canine disease is a good model of the adult human form of the disease,” says Olby. “We hope that this discovery will provide insight into the development of this disease.”

Explore further: Stress reaction may be in your dad's DNA, study finds

More information: “A canine Arylsulfatase G (ARSG) mutation leading to a sulfatase deficiency is associated with neuronal ceroid lipofuscinosis”, Published: Aug. 17, 2010, in Proceedings of the National Academy of Sciences.

Related Stories

Physical activity delays onset of Huntington's in mouse model

Apr 01, 2008

The simple act of running in an exercise wheel delays the onset of some symptoms of Huntington’s disease in a mouse model of the fatal human disorder according to research published in the open-access journal BMC Neuroscience. These ...

Recommended for you

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.