A breakthrough in tuberculosis research

Jul 29, 2010

Often causing no symptoms in carriers of the disease, worldwide tuberculosis (TB) infects eight to ten million people every year, kills two million, and it is highly contagious as it is spread through coughing and sneezing.

"It's a global health disaster waiting to happen, even here in Canada, but this new paradigm in TB research may offer an immediate opportunity to improve vaccination and treatment initiatives," explains Dr. Maziar Divangahi of McGill University and of the Research Institute of the McGill University Health Centre.

The ability of to persist in individuals with apparently normal immune systems implies that they have developed strategies to avoid, evade, and even subvert immunity. The bacteria mainly enter the body through inhalation into the respiratory tract. , a type of white blood cell residing in our lungs, initially recognize the bacteria and engulf them. This process is one of our immune system's defense mechanisms. However, TB has evolved into a parasite that can survive and replicate inside the macrophages until they burst out, spreading the infection.

The way infected macrophages die is a determining factor in the development of immunity to TB. Macrophages can induce apoptosis, a type of cell death which keeps their membrane intact, trapping and reducing bacterial viability. However, TB bacteria induce another type of cell death called necrosis. Necrosis causes by disrupting the cell membranes, which enables the bacteria to escape the cell. It may help to visualize a box with broken walls.

The key to the fate of the macrophages is the balance between two kinds of eicosanoids. Eicosanoids are molecules that contribute to the control of our immune system. The of TB bacteria enables it to tip this balance in favor of necrosis, and human revealed that modification in eicosanoids production is associated with susceptibility or resistance to TB. Fortunately, drugs that target the production of eicosanoids are already in use for treating other inflammatory diseases, such as rheumatoid arthritis.

"The next steps will be to see exactly how these drugs can be used to treat TB," said Divangahi.

Explore further: Ebola death toll rises to 1,427: WHO

More information: McGill researchers publish an editorial in Expert Reviews of Respiratory Medicine about the increased risk of a TB epidemic following the earthquake in Haiti: www.expert-reviews.com/doi/full/10.1586/ers.10.41

add to favorites email to friend print save as pdf

Related Stories

Preventing tuberculosis reactivation

Oct 18, 2007

Tuberculosis (TB) is the leading cause of death due to infectious disease in the world today. It is estimated that 2 billion people are currently infected, and although most people have latent infection, reactivation can ...

Experimental immune-boosting drug worsens TB in mice

Apr 12, 2010

An experimental drug that boosts production of the immune system protein interferon worsens tuberculosis (TB) in mice, according to scientists from the National Institutes of Health. The drug acts indirectly ...

Recommended for you

How the world is underestimating Ebola: WHO

1 hour ago

The Ebola epidemic tearing through western Africa is by far the deadliest known outbreak of the disease, yet the magnitude of the spread is believed to be severely underestimated.

Last Ebola-free region of Liberia falls to virus

1 hour ago

Every region of Liberia has now been hit by Ebola, officials said Friday, as the World Health Organization warned the fight against the worst-ever outbreak of the killer disease would take months.

Ebola death toll rises to 1,427: WHO

12 hours ago

The death toll from the Ebola outbreak sweeping through west African countries has risen to 1,427 out of more than 2,600 cases, the World Health Organization said Friday.

User comments : 0