Brain Fluid Sensor May Improve Hydrocephalus Treatment

Jul 16, 2010

(PhysOrg.com) -- Hydrocephalus, or "water on the brain" as it is often called, is a condition that is diagnosed in tens of thousands in the U.S. every year, causing symptoms from mild gait problems to life-threatening seizures.

A surgically implanted shunt system that diverts excess from the brain to a part of the body where it can be absorbed -- usually the abdomen -- has long been the preferred treatment. But shunts are unreliable and often fail after implantation. The devices have remained virtually unchanged for more than a half century.

Nearly a decade ago Andreas Linninger, associate professor of bioengineering at the University of Illinois at Chicago, attended a talk by a physician who challenged scientists to think up new ways to treat hydrocephalus. Linninger took up the challenge and just received an additional $423,000 grant from the National Institute of Neurological Disorders and Stroke to begin testing in an a patented volume sensor he developed to better regulate fluid flow in hydrocephalus.

"One of the biggest problems with shunts is they either drain too much -- so brain ventricles, or cavities, completely collapse -- or drain too little," Linninger said.

"Either way, it's not the best outcome for patients."

Linninger's aim is to develop a measurement that always knows accurately the ventricular size, and keeps it constant using an active feedback control mechanism.

Linninger, graduate student Sukhi Basti and undergraduate Tim Harris have used their mathematical and engineering skills to better understand flow in the brain ventricles where fluid accumulates. They developed a microelectronic sensor to accurately regulate this flow and have begun testing it on laboratory rats with hydrocephalus.

"We've done acute, or short-period, experiments to measure the volume of fluid removed over a few hours. The more important next step is assessing the animal over several weeks to see if we can properly track ventricular size after shunting," Linninger said.

Linninger ultimately hopes to combine a volume sensor with an actively controlled micro-pump to maintain optimal fluid levels. Shunts used now are passive and rely on pressure to discharge fluid. They are affected by posture, activity and even altitude, Linninger said.

Linninger's team hopes the animal tests will validate the procedure, which may lead to a start-up company and a commercial developer to create a device for use in patients.

Explore further: The impact of bacteria in our guts

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

The impact of bacteria in our guts

12 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

12 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

13 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 0