Researchers find structural basis for incidence of skin cancers in a genetic disorder

Jun 23, 2010

Researchers from Mount Sinai School of Medicine have found why patients with a variant form of xeroderma pigmentosum (XPV), an inherited genetic disorder characterized by extreme sensitivity to the sun, are more susceptible to skin cancers than the general population. The data are published in the current issue of the journal Nature. Their finding sets the stage for research into therapies that would help protect people with XPV from developing skin cancers.

The research team determined that, in the general population, eta, an enzyme able to overcome the barriers created by and ultraviolet rays and continue replicating DNA strands, is structured differently from any other polymerase. However, in people with XPV, since this enzyme is missing, they are unable to bypass this damage, causing the replication process to stall, resulting in mutations and extremely high susceptibility to skin cancer.

Researchers have never been able to fully determine a structural basis for why the enzyme can get around UV damage. After nearly a decade of research, the Mount Sinai team successfully developed a crystal model, or a three dimensional chemical derivation, of the enzyme. They determined that in the general population, DNA polymerase eta suppresses because the active site, where chemical reactions required to replicate DNA take place, can adjust much better to UV damage than any other DNA polymerase.

"We have been unable to study how DNA polymerase eta can replicate through UV damage because we did not have a crystal structure of the enzyme to study," said Aneel K. Aggarwal, Ph.D, Professor, Structural and , Mount Sinai School of Medicine. "Our team succeeded in developing this structure and determining what makes this enzyme unique."

In conjunction with Drs. Louise and Satya Prakash's group at the University of Texas Medical Branch in Galveston, Texas, Dr. Aggarwal's team generated crystals and analyzed them using X-rays. They determined that the active site of DNA polymerase eta is structured in such a way that it can easily accommodate the UV induced DNA lesions and replicate through them.

"Now that we know the structural basis for the suppression of skin cancers by this , one question for the future is if there's a way to restore its function in people with XPV and reduce their risk for cancer," said Dr. Aggarwal.

According to the National Center for Biotechnology Information of the National Institutes of Health, xeroderma pigmentosum is an inherited characterized by severe sun sensitivity resulting in blisters and precancerous freckles, benign tumors on the skin and eyes, blurry vision and eye pain from atrophic eye lids, and neurologic symptoms including cognitive decline.

Explore further: Novel marker discovered for stem cells derived from human umbilical cord blood

Provided by The Mount Sinai Hospital

not rated yet

Related Stories

Stretching DNA to the Limit: DNA damage in a new light

Apr 20, 2007

It has long been known that UV light can damage DNA, reducing its ability to replicate and interact with proteins, and often resulting in the development of skin cancers. However, not much is known about how the elasticity ...

Sunburn alert: UVB does more damage to DNA than UVA

Jul 01, 2008

As bombs burst in air this July 4, chances are that sunburn will be the red glare that most folks see – and feel. But unfortunately, even when there is no burn, the effects of the sun's ultraviolet (UV) rays can have deadly ...

Researchers explain cell response to skin-damaging UV rays

Oct 01, 2007

It’s well known that overexposure to ultraviolet rays from the sun can cause major skin problems, ranging from skin cancer to sunburns and premature wrinkles. A tan, for example, is nature’s own UV protection and an unhealthy ...

Recommended for you

New pain relief targets discovered

8 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

9 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

Proper stem cell function requires hydrogen sulfide

12 hours ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

User comments : 0

More news stories

Chronic inflammation linked to 'high-grade' prostate cancer

Men who show signs of chronic inflammation in non-cancerous prostate tissue may have nearly twice the risk of actually having prostate cancer than those with no inflammation, according to results of a new study led by researchers ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...