Inflammatory diseases: Scientists identify antiviral defense

Jun 15, 2010

Canadian researchers have discovered a new way the body combats respiratory viral infections. In the prestigious journal PLoS Pathogens, scientists from the University of Montreal and the University of Montreal Hospital Research Center explain how the NOX2 molecule, an enzyme that generates a burst of highly reactive oxygen derivatives (or free radicals), activates defense genes and molecules when viruses invade lung cells.

"The expression 'free radicals' is often associated with nasty molecules we've been told to guard against by eating fruits and vegetables that are high in so-called antioxidants - molecules that can neutralize these free radicals. It turns out that our own cells generate free radicals when invaded by viruses; these serve a critical role when our cells mount an immune response to viral invasions," says senior author and biochemistry professor Nathalie Grandvaux of the University of Montreal and a scientist at the University of Montreal Hospital Research Center.

The University of Montreal study builds on previous research that shows human cells contain key sensor molecules that detect virus invasions. Sensor molecules, including RIG-I and Mda-5, were found to bind to a molecule called MAVS when they sense a virus. This process unleashes a signaling cascade, or a series of , which turns on antiviral genes. Until now, however, it was unclear how the process occurs.

Dr. Grandvaux and her colleagues were able to show that airway cells contain an enzyme called NOX2 that snatches oxygen from the surrounding air and converts it into highly reactive free radicals. Instead of ravaging cells, these free radicals react with other molecules to drive production and maintain the stability of MAVS molecule to essential levels. This leads to a chemical cascade that activates genes needed to mount an antiviral response.

Although the research team did find that free radicals are beneficial, they can sometimes be too much of a good thing. "In the presence of a virus, NOX2 also controls inflammation in our airways, which when excessive causes virus-associated respiratory problems, including bronchiolitis or on a long-term basis, asthma," says Dr. Grandvaux. "NOX2 is a prime target for drugs being developed to combat such inflammatory diseases. Indeed, a related enzyme called NOX1 is also being targeted against inflammatory diseases of the digestive tract."

Explore further: Infant cooing, babbling linked to hearing ability

More information: PLoS Pathogens article: www.plospathogens.org/article/… journal.ppat.1000930

add to favorites email to friend print save as pdf

Related Stories

Antioxidant to retard wrinkles discovered

Aug 30, 2007

A new method for fighting skin wrinkles has been developed at the Hebrew University Faculty of Agriculture, Food and Environmental Quality Sciences.

New agent strikes at respiratory syncytial virus replication

May 05, 2008

University of Texas Medical Branch at Galveston researchers have achieved promising results with a potential new weapon against respiratory syncytial virus, the most common cause of infant hospitalization in the United States.

Recommended for you

Infant cooing, babbling linked to hearing ability

3 hours ago

Infants' vocalizations throughout the first year follow a set of predictable steps from crying and cooing to forming syllables and first words. However, previous research had not addressed how the amount ...

Developing 'tissue chip' to screen neurological toxins

4 hours ago

A multidisciplinary team at the University of Wisconsin-Madison and the Morgridge Institute for Research is creating a faster, more affordable way to screen for neural toxins, helping flag chemicals that ...

Gene mutation discovered in blood disorder

8 hours ago

An international team of scientists has identified a gene mutation that causes aplastic anemia, a serious blood disorder in which the bone marrow fails to produce normal amounts of blood cells. Studying a family in which ...

Airway muscle-on-a-chip mimics asthma

10 hours ago

The majority of drugs used to treat asthma today are the same ones that were used 50 years ago. New drugs are urgently needed to treat this chronic respiratory disease, which causes nearly 25 million people ...

User comments : 0