Supramolecular architecture explains the incredible strength of fibrin blood clots

May 18, 2010

A new study unlocks the previously unknown structural features that underlie the incredible elastic resilience of fibrin, the main protein in blood clots. The research, published by Cell Press in Biophysical Journal on May 18th, provides insight into how the molecular architecture of a fibrin network contributes to its resilience and may help to explain what causes the failure of a clot, which can lead to a stroke or heart attack.

Fibrin is a which assembles into a remarkably strong spider web-like gel that forms the structural framework of blood clots. Previous work has shown that fibrin networks, thought to be among the most resilient proteins in the natural world, stiffen when deformed and become increasingly resistant to further strain. Although this extraordinary resilience appears to be crucial for the biological function of blood clots, the of this resilience is not well understood.

"To better understand the superior elasticity of fibrin networks, we measured the mechanical behavior of purified fibrin gels on multiple scales," says senior study author, Dr. Gijsje H. Koenderink from the Biological Group at the FOM Institute AMOLF in The Netherlands. "We found that the fibrin has a series of molecular domains that are stretched out sequentially, on smaller and smaller scales, when clots are deformed. This stretching leads to gel stiffening, which protects the clots from damage"

Specifically, Dr. Koenderink's group made the surprising discovery that the fibrin fibers are very porous loose bundles of thin filaments that are connected by flexible crosslinkers. This open structure (containing 80% water) makes the fibers 100-fold more flexible than previously thought, and enables sequential stiffening due to straightening out of the bundles between network crosslinks followed by straightening out of flexible protein domains inside the bundles. "We found that it is this bundle-like structure of fibrin fibers that is ultimately responsible for the superior mechanical properties of fibrin gels," explains Dr. Koenderink.

The researchers presented a theoretical model that explained their observations in terms of this unique hierarchical architecture of the fibers. "Our data reveal molecular design principles that allow to recover from large forces, such as shear forces from blood flow, furthering our understanding of how pathological alterations in fibrin cause clot rupture and bleeding or thrombosis," concludes Dr. Koenderink. "Moreover, our findings suggest a new design concept for resilient bio-inspired materials with potential applications in drug delivery and tissue repair."

Explore further: Critically ill ICU patients lose almost all of their gut microbesand the ones left aren't good

add to favorites email to friend print save as pdf

Related Stories

Exploring the molecular origin of blood clot flexibility

Jan 12, 2007

How do blood clots maintain that precise balance of stiffness for wound healing and flexibility to go with the flow? Researchers at the University of Pennsylvania School of Medicine and the School of Arts and ...

Blood clotting protein linked to rheumatoid arthritis

Nov 16, 2007

Researchers at Cincinnati Children’s have issued the first study showing that a protein normally involved in blood clotting (fibrin), also plays an important role in the inflammatory response and development of rheumatoid ...

FDA OKs new adhesive to treat burn victims

Mar 20, 2008

The U.S. Food and Drug Administration approved a medical adhesive -- a fibrin sealant called Artiss -- for use in attaching skin grafts to burn patients.

Recommended for you

Developing 'tissue chip' to screen neurological toxins

8 minutes ago

A multidisciplinary team at the University of Wisconsin-Madison and the Morgridge Institute for Research is creating a faster, more affordable way to screen for neural toxins, helping flag chemicals that ...

Gene mutation discovered in blood disorder

4 hours ago

An international team of scientists has identified a gene mutation that causes aplastic anemia, a serious blood disorder in which the bone marrow fails to produce normal amounts of blood cells. Studying a family in which ...

Airway muscle-on-a-chip mimics asthma

6 hours ago

The majority of drugs used to treat asthma today are the same ones that were used 50 years ago. New drugs are urgently needed to treat this chronic respiratory disease, which causes nearly 25 million people ...

Lost protein could prevent hardening of the arteries

10 hours ago

(Medical Xpress)—Researchers have found that when the protein matrix metalloproteinase-14 (MMP-14) is reduced or lost, white blood cells, known as macrophages, become good and could prevent hardening of ...

User comments : 0