New analysis reveals clearer picture of brain's language areas

May 04, 2010
New analysis reveals clearer picture of brain's language areas
Sample brain activations of a left frontal language area in three subjects. Activations vary substantially in their precise locations, plausibly due to brain anatomy differences between subjects. Traditional group analyses would only capture a small proportion of each subject's activations and would underestimate the functional selectivity of these regions. Image courtesy Evelina Fedorenko

(PhysOrg.com) -- Language is a defining aspect of what makes us human. Although some brain regions are known to be associated with language, neuroscientists have had a surprisingly difficult time using brain imaging technology to understand exactly what these ‘language areas’ are doing. In a new study published in the Journal of Neurophysiology, MIT neuroscientists report on a new method to analyze brain imaging data — one that may paint a clearer picture of how our brain produces and understands language.

Research with patients who developed specific deficits (such as the inability to comprehend passive sentences) following suggest that different aspects of language may reside in different parts of the . But attempts to find these functionally specific regions of the brain with current neuroimaging technologies have been inconsistent and controversial.

One reason for this inconsistency may be due to the fact that most previous studies relied on group analyses in which brain imaging data were averaged across multiple subjects — a computation that could introduce statistical noise and bias into the analyses.

“Because brains differ in their folding patterns and in how functional areas map onto these folds, activations obtained in functional MRI studies often do not precisely ‘line up’ across brains,” explained Evelina Fedorenko, first author of the study and a postdoctoral associate in Nancy Kanwisher’s lab at the McGovern Institute for Brain Research at MIT. “ Some regions of the brain thought to be involved in language are also geographically close to regions that support other cognitive processes like music, arithmetic, or general working memory. By spatially averaging brain data across subjects you may see an activation ‘blob’ that looks like it supports both language and, say, arithmetic, even in cases where in every single subject these two processes are supported by non-overlapping nearby bits of cortex.”

The only way to get around this problem, according to Fedorenko, is to first define “regions of interest” in each individual subject and then investigate those regions by examining their responses to various new tasks. To do this, they developed a “localizer” task where subjects read either sentences or sequences of pronounceable nonwords.

Sample sentence: THE DOG CHASED THE CAT ALL DAY LONG
Sample nonword sequence: BOKER DESH HE THE DRILES LER CICE FRISTY’S

By subtracting the nonword-activated regions from the sentence-activated regions, the researchers found a number of language regions that were quickly and reliably identified in individual brains. Their new method revealed higher selectivity for sentences compared to nonwords than a traditional group analysis applied to the same data.

“This new, more sensitive method allows us now to investigate questions of functional specificity between language and other cognitive functions, as well as between different aspects of language,” Fedorenko concludes. “We’re more likely to discover which patches of cortex are specialized for language and which also support other cognitive functions like music and working memory. Understanding the relationship between language and the rest of condition is one of key questions in cognitive neuroscience.”

Fedorenko published the tools used in this study on her website. The goal for the future, she argues, is to adopt a common standard for identifying language-sensitive areas so that knowledge about their functions can be accumulated across studies and across labs. “The eventual goal is of course to understand the precise nature of the computations each brain region performs,” Fedorenko says, “but that’s a tall order.”

Explore further: Study finds potential genetic link between epilepsy and neurodegenerative disorders

More information: Fedorenko E, Hsieh P, Nieto-Castañón A, Whitfield-Gabrieli S, Kanwisher N. A new method for fMRI investigations of language: defining ROIs functionally in individual subjects. J Neurophysiol (April 21, 2010). DOI:10.1152/jn.00032.2010

Related Stories

Unlocking the brain after stroke

Sep 23, 2008

University of Queensland research is set to unlock the regions of the brain central to successful language treatment following a stroke.

Brain Waves Aid Study of Language Impairment

Mar 09, 2010

(PhysOrg.com) -- By looking at how the brain responds to different aspects of grammar, specifically nouns and verbs, researchers at the UT Dallas Callier Center for Communication Disorders are hoping to provide a better understanding ...

Can You Read My Mind?

Mar 23, 2005

The W.M. Keck Foundation has awarded Carnegie Mellon University a $750,000 grant to support research into how the human brain deciphers language, which could one day yield advances in the treatment of neurological disorders ...

Music makes you smarter

Oct 26, 2009

Regularly playing a musical instrument changes the anatomy and function of the brain and may be used in therapy to improve cognitive skills.

Recommended for you

Molecular basis of age-related memory loss explained

8 hours ago

From telephone numbers to foreign vocabulary, our brains hold a seemingly endless supply of information. However, as we are getting older, our ability to learn and remember new things declines. A team of ...

The neurochemistry of addiction

9 hours ago

We've all heard the term "addictive personality," and many of us know individuals who are consistently more likely to take the extra drink or pill that puts them over the edge. But the specific balance of ...

Study examines blood markers, survival in patients with ALS

Jul 21, 2014

The blood biomarkers serum albumin and creatinine appear to be associated with survival in patients with amyotrophic lateral sclerosis (ALS) and may help define prognosis in patients after they are diagnosed with the fatal ...

User comments : 0